NATURAL RESOURCES MANAGEMENT PLAN: OXBOW LAGOON, ROCKY RIVER RESERVATION v.1.0

Cleveland Metroparks Technical Report 2012/NR-03

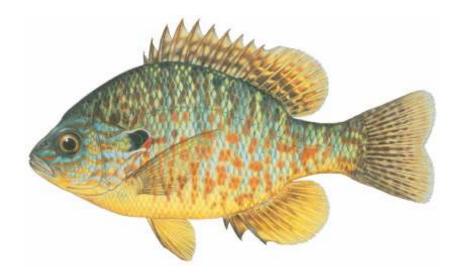


Image left: Pumpkinseed sunfish (*Lemposis gibbosus*) are the most prevalent fish species in Oxbow Lagoon. Photo right: Cardinal flower (*Lobelia cardinalis*) and swamp milkweed (*Asclepias incarnata*) share a bankside log at Oxbow Lagoon (photo M. Durkalec).

Bruce G. Rinker, Dan T. Moore, Debra K. Berry Board of Park Commissioners Brian M. Zimmerman Executive Director

Cleveland Metroparks 4101 Fulton Parkway, Cleveland, Ohio 44114

TABLE OF CONTENTS

Table of Contents	2
List of Tables, Figures, and Appendices	3
Executive Summary	4
Historic Overview and Background	6
Water Quality and Habitat Overview	7
Fisheries Resource Overview	8
Other Recreational Uses	11
Ecosystem Function Overview	12
Current Fisheries Management	13
Current Wildlife Habitat Management	15
Management Recommendations	15
Literature Cited	18

LIST OF TABLES, FIGURES, AND APPENDICES

Tables	
Table 1. Basic characteristics of the sunfish population based on 10 August 2011 assessment (sampling time = 59 minutes)	20
Figures	
Figure 1. Oxbow Lagoon Subwatershed Map	21
Figure 2. Oxbow Lagoon Site Map	22
Figure 3. Length/Frequency of Sunfish Species	23
Appendices	
Appendix A. Fish Population Assessment Data Sheets 10 August 2010	24

Executive Summary

Oxbow Lagoon is an 8.1 acre natural river oxbow which is enhanced with a raised spillbox structure on the northeast end. The oxbow and surrounding area is a popular recreation area in Cleveland Metroparks for a combination of fishing, picnicking, hiking, baseball/softball, and open field recreational activities. The overarching management goal of the waterbody is to maintain its "fishable" status per the Federal Clean Water Act (CWA) objectives, which is accomplished through active management activities focused on the fishery and habitat of the oxbow.

There are no known major water quality issues in Oxbow Lagoon. The oxbow does have nuisance levels of aquatic vegetative growth in mid to late summer, which is managed through chemical treatments around the fishing platform at the north end in the late spring/early summer. The oxbow serves a watershed role as a stormwater buffer between adjacent lands and the East Branch Rocky River.

The oxbow offers a fair recreational fishery, which would currently be considered a second tier offering in Cleveland Metroparks. There are currently at least 12 species of fish known to inhabit the oxbow, many of which would be considered of marginal interest to anglers. The fish community is currently dominated by stunted pumpkinseed sunfish (*Lepomis gibbosus*) and, to a lesser degree, by common carp (*Cyprinus carpio*) and golden shiner (*Notemigonus crysoleucas*).

Two sampling efforts in 2011 (10 August and 25 October) revealed a lack of largemouth bass (*Micropterus salmoides*), which reflects a severe predator/prey imbalance which is in large part the reason for the overpopulation of stunted sunfish. The reason for the lack of bass is under investigation, but is likely a combination of

limitations of habitat, such as low dissolved oxygen (D.O.) under the ice in winter as aquatic vegetation decomposes, and historic overharvest by anglers. Lack of appropriate spawning areas could be another limitation in the waterbody which could be addressed by installing spawning structures. Largemouth bass were stocked in the oxbow in early November 2011, and will likely continue to be stocked over the next several years, in an attempt to reestablish a predator population. Follow-up sampling in the future, likely summer 2016, will determine the success of this effort. In the meantime, D.O. will be monitored under the ice when conditions permit. If future results indicate overharvest of bass is a significant issue, changes in regulations for bass will be considered in the oxbow fishing area. Current regulations allow the harvest of 2 largemouth bass ≥12" per angler/day. Reestablishing a healthy predator population would have a top-down effect on the prey species in the oxbow, namely improving growth rates of stunted pumpkinseed sunfish. No other fish species in the oxbow are managed through bag or size regulations.

The oxbow does provide function as wildlife habitat. Although no rare species are known to inhabit the waterbody or immediate surrounding area, it does offer a typical regional assemblage of common waterfowl, wading birds, reptiles, amphibians, invertebrates, and aquatic macrophytes.

If the fishery at Oxbow Lagoon continues to be limited despite adaptive management efforts, then other higher quality fisheries in the area will fulfill this role and the management focus should shift primarily towards improving the waterbody as a wetland offering quality wildlife habitat and hydrologic function.

Historic Overview and Background

Oxbow Lagoon is an 8.1 acre natural Rocky River oxbow with water level increased by a raised culvert outlet. The current oxbow is the former main channel of the East Branch Rocky River and was cut-off to facilitate the building the parkway. The Engineering Department Report from the 1938-1939 Cleveland Metropolitan Park District Report of the Board of Park Commissioners states "The new Lagoon, a former river bed, is slightly more than one-half mile in length. This former river bed was drained and cleaned, pit holes leveled, and carefully graded to establish a water depth ranging from two to nine feet. A dam was built in the main river channel below the intake to insure a proper lagoon level and constant water circulation". The oxbow has a relatively small watershed of 0.16 miles² per USGS StreamStats program, with drainage mostly from the west and south (Figure 1). Historically, the deepest area is at the northern end of the oxbow at just over 6 feet, with depths in the middle section averaging 5-6 feet, and the south end of the waterbody comparatively shallow at around 3 feet maximum depth. Most of the fishing opportunities exist in the northern half of the oxbow, and a wooden fishing platform was installed in this area. The oxbow is situated such that the east shore is mostly surrounded by medium width forested buffer and the west shore has a wide forest buffer, with the extreme north and south ends coming in near proximity to the parkway and paved all purpose trail (APT). The east shore of the middle of the oxbow comes in close contact with a parking lot and picnic area, and a natural surface path runs along the east shoreline. Despite intensive park development, the oxbow retains a mostly scenic quality and is largely surrounded by tree canopy and adjacent wetlands. (Figure 2). The oxbow has been part of a fairly intensively used

recreation area which features fishing, picnicking, hiking, wildlife viewing, biking, baseball/softball, and open field recreational activities. Activities are overall most intense during the late spring through summer months.

The overarching goal for management of Oxbow Lagoon is to maintain, and improve where possible, the chemical, physical, and biological integrity of the waterbody as reflected in the national water quality objective as contained in the Federal Clean Water Act (CWA). The CWA objective is often referred to as the "fishable/swimmable goal", and the foremost goal for the oxbow is its continued management as a fishing area. This is currently conducted through management activities focused on the fishery. Swimming is prohibited at this location.

Water Quality and Habitat Overview

All indications are that overall water quality is good for this lentic system, given its location in an otherwise urbanized region. The oxbow would be best characterized as eutrophic, which is a typical scenario for an old river oxbow. The oxbow receives nutrients from adjacent watershed runoff, as well as from the waters of the East Branch Rocky River, which periodically backflows into the lagoon during high water periods. Eutrophication is most reflected in the form of heavy rooted aquatic macrophyte growth during the mid to late summer months. Consequently, it is suspected that decomposing aquatic vegetation under the ice in winter may cause low dissolved oxygen levels. Water transparency varies, being clearer during the colder seasons, due to seasonal variation in phytoplankton and zooplankton communities in the oxbow (Wetzel 1983).

There is no significant industry in the Oxbow Lagoon subwatershed to contribute associated pollutants. During periods of high water, the lagoon occasionally has direct hydrologic connection to the East Branch of the Rocky River via backflow through the spillbox outlet structure. According to the Ohio Environmental Protection Agency, the primary physical/chemical water quality concerns in the East Branch Rocky River are nutrients and fecal coliform bacteria levels (Ohio EPA 1999). There are no other exceedances of warm water habitat (WWH) physical/chemical criteria for the East Branch of the Rocky River (Ohio EPA 1999). No further documentation of physical or chemical water quality issues at the oxbow were found in Cleveland Metroparks historic files.

Fisheries Resource Overview

In an effort to obtain current data on the fish community in Oxbow

Lagoon, electrofishing was performed on 10 August 2011 in two sampling runs totaling
59 minutes. Electrofishing is a well established method utilized by fisheries managers to
accurately assess fish population dynamics, abundance, and structure (Neilsen and
Johnson 1983, Reynolds 1993, Smith-Root 2007). Sample run 1 was conducted for 45
minutes in the northern third of the waterbody and sample run 2 was conducted for 14
minutes in the approximate middle section of the oxbow (Figure 2) Approximately the
southern quarter of the waterbody was inaccessible on this date due to shallow water and
heavy submerged aquatic weeds and woody debris. A Smith Root GPP 5.0 electrofishing
unit and customized Alweld commercial johnboat, including booms constructed by
Ashcraft Machine and Supply, Inc., of Newark, Ohio, were used. One person

maneuvered the boat and operated the electrofishing unit control box while two assistants collected stunned fish, which were retained in an aerated 90 gallon onboard livewell for later processing. Fish lengths (mm) were obtained using a custom measuring board and weights (g) were obtained using a digital scale. Data was recorded onsite and all fish were released afterwards. Datasheets from the sampling activity are available in Appendix A.

Oxbow Lagoon offers an assemblage of common species for a small lake in Ohio (Austin 1996). The most abundant fish species in the oxbow are pumpkinseed sunfish (Lepomis gibbosus) and common carp (Cyprinus carpio). Other species present in moderate abundance and also of potential interest to anglers include white crappie (Pomoxis annularis), bluegill (L. macrochirus), white sucker (Catostomus commersoni) and yellow and brown bullhead catfishes (*Ameriurus* spp.). Warmouth sunfish (*L*. gulosis) and green sunfish (L. cyanellus) are also present in the oxbow in small numbers. Largemouth bass (*Micropterus salmoides*) were formerly present in the oxbow but were not found during sampling in 2011. Forage species found in the oxbow include, in descending order of abundance, golden shiner (*Notemigonus crysoleucas*), emerald shiner (Notropis atherinoides), and gizzard shad (Dorosoma cepedianum). In total, at least 12 species of warmwater fish are currently or historically known from the oxbow. Introduction of some of these species are likely a combination of intrusion from inflow via the East Branch Rocky River, as well as potential incidental introductions from angler's bait buckets.

The fish community, overall, is notable in lacking a healthy predator population. Largemouth bass should be the dominant year-round predator in Oxbow Lagoon given the habitat available and, as such, have a marked influence over the fish community (Anderson 1976, Carlander 1977, Austin 1996). The reason for this lack of largemouth bass in the recent sampling may be due to low dissolved oxygen in harsh winters, lack of suitable spawning areas, overharvest by anglers, or a combination of these factors. Lack of prey species is not a limiting factor in this waterbody. Due to this scenario predator proportional stock densities and predator/prey ratio could not be calculated and analyzed. Efforts are currently underway to reintroduce largemouth bass to the oxbow and also to determine limiting factors influencing sustainability of their populations in the waterbody (see below).

Pumpkinseed sunfish are the most dominant forage fish in Oxbow Lagoon.

Sampling yielded 209 total sunfish, mostly pumpkinseed, weighing a total of 2.97 kg (6.5 lbs) (Table 1). Based on plotting length against frequency, there appears to be as many as six year classes of sunfish in the sample (Figure 3). Note that the smallest size classes of sunfish are less susceptible to electrofishing than larger specimens due to less surface area exposed to the electric field, hence their lower frequency in the sample. Given a complete lack of "quality" size sunfish of 15 cm or greater in the sample, proportional stock density (PSD) of sunfish was 0.0%, reflecting a severely stunted sunfish population (Anderson 1980, Gabelhouse 1984). This would be the expected outcome of a system lacking significant predators, as is the case in Oxbow Lagoon. Given the lack of predators in the system, a Total Quality (TQ) plot could not be calculated for Oxbow Lagoon in its current state.

Due to the heavy submerged weed growth in the southern half of the oxbow during the 10 August 2011 sampling, a follow-up sampling was conducted on 25 October 2011 when the vegetation was greatly reduced at the end of the growing season, to verify the earlier sampling results were representative. Overall, the numbers and species of fish sampled were similar, so the earlier survey was considered a representative sample of the fish community despite the heavy vegetative cover. Two additional species (gizzard shad and warmouth sunfish), both present in very small numbers, were collected during the October sampling.

The fishery, overall, would be characterized as "fair" in its current state, and the venue is considered a second tier fishing destination within the Park District most suited to families, children, and less experienced anglers who want to catch fish regardless of size or sporting quality. Other than sunfish, other species present would be characterized as incidental catches by the majority of anglers who utilize the oxbow.

Other Recreational Uses

Other than fishing, wildlife watching is the only other significant recreational activity suited to Oxbow Lagoon. The waterbody is too small and filled with woody debris and submerged aquatic vegetation to make paddling sports (such as kayaking and canoeing) popular, and swimming is prohibited in this area. Hiking around parts of the lagoon is also popular, as is open field recreation, softball/baseball, and picnicking in the areas adjacent to the middle of the lagoon (Figure 2).

Ecosystem Function Overview

Oxbow Lagoon is a natural oxbow wetland, although its hydrology is now controlled with a water control structure, and therefore does serve some general ecosystem functions in the watershed. The basin, which has a watershed size of 0.16 mi², drains adjacent lands which are in a mostly natural state (Figures 1, 2). A significant forested wetland borders the northeast shoreline of the predominantly deepwater marsh oxbow, located at approximately the northern fifth of the waterbody.

A number of associated wildlife, notably birds, utilize the oxbow. Great blue heron (Ardea herodias), belted kingfisher (Cervle alcyon), mallard duck (Anas platvrhynchos), wood duck (Aix sponsa), and Canada goose (Branta canadensis) are observed at the oxbow regularly by wildlife watchers. Nesting of red-headed woodpecker (Melanerpes erythrocephalus) is a regular occurrence in the standing dead wood in and around the water (Wendy Weirich, Rocky River Nature Center Manager, personal communication). Barred owl (Strix varia) have also nested in this area in recent years (Annette Piechowski, Medina Raptor Center volunteer, personal communication). Although not documented at the site, there is also potential prothonetary warbler (Protonotaria citrea) nesting habitat onsite, which is an uncommon warbler species in northern Ohio. North American beaver (Castor canadensis) have used the oxbow for years, and currently have a lodge on the east bank of the middle segment of the oxbow. The oxbow is host to an assemblage of common reptiles and amphibians either yearround or during the mating season, including eastern painted turtle (Chrysemys picta picta), snapping turtle (Chelydra serpentina), American toad (Anaxyrus americanus), green frog (Lithobates clamitans), and bullfrog (L. catesbeianus). No threatened or

endangered species of flora or fauna are known residents of the oxbow. Although common dragonfly (suborder Anisoptera) and damselfly (suborder Zygoptera) species can be observed utilizing the oxbow margin a regular basis, there is little information collected on specific macroinvertebrate or microbial communities within the waterbody.

The vegetative community of the oxbow is comprised mainly of Eurasian watermilfoil (*Myriophyllum spicatum*), which becomes progressively more dense moving toward the south end of the oxbow. Overall, submerged aquatic vegetation in the oxbow would be considered heavy in mid to late summer. Duckweed (*Lemna* spp.) is also found in the southern basin. Emergent vegetation in the water is sparse, although in wet areas adjacent to the oxbow patches of swamp milkweed (*Asclepias incarnata*) and cardinal flower (*Lobelia carinalis*). Algal populations are not problematic in the oxbow. A full inventory of aquatic vegetation at Oxbow Lagoon has not been undertaken so a number of other species are likely present.

Current Fisheries Management

Oxbow Lagoon has not been an intensively managed fishery in recent years, mainly because other high quality fisheries resources, including the Rocky River and Wallace Lake, are within close proximity. A bag limit of 2 largemouth bass of 12" or greater per angler per day is in affect although, as previously noted, there are currently few bass in the oxbow. There are no bag or size limit regulations on any other fish species in the oxbow. As is the case with all Cleveland Metroparks waters, a valid Ohio fishing license is required to fish Oxbow Lagoon. A wheelchair accessible fishing platform is available at the northeastern end of the waterbody (Figure 2).

The Oxbow Lagoon fish community could be supplemented with fish stocking activities, as needed. Stocking of various fish species, such as largemouth bass, is a very common fisheries management activity which has been shown to have many benefits to the public, especially in urban areas (DesJardine 1983, Gordon 1983, Halko1983, Heidinger 1993, Manfredo et al. 1983, Norville 1961, Weithman 1993). The only stocking activity conducted in the past six years was reintroduction of largemouth bass following the August 2011 fish community assessment. On November 4 and 7, 2011, approximately 375 largemouth bass and 650 bluegill were transferred to Oxbow Lagoon from an irrigation lake at Medina Country Club. In the short term, it is hoped that the predatory bass will begin reducing the stunted pumpkinseed sunfish population to a more desirable level. In the longer term, more largemouth bass will be stocked in the oxbow over the next few years with the hope that a significant bass population will establish by the time the next fish community survey is conducted, likely in 2016.

It has been noted by various fish managers that proper communication with the public and the media is a powerful, and often underutilized, fisheries management tool (Decker and Krueger 1993, Patterson 1983, Cohen et al. 2008). With this in mind, information regarding fishing at Oxbow Lagoon is disseminated through multiple outlets, including Cleveland Metroparks fishing booklet and trifold, on the Cleveland Metroparks website, and through direct communication with anglers. The fishery, unlike Wallace Lake or the Rocky River, is not considered a highlight offering so it is not promoted heavily through the media or other outlets to a wider audience.

Current Wildlife Habitat Management

Overall, Oxbow Lagoon requires a low level of management effort given its mostly natural character. Nusiance aquatic vegetation around the fishing platform is sprayed annually with aquatic herbicide in early summer, as well as in follow-up applications, when needed. Natural Resource division staff have installed, and routinely monitor, three wood duck nesting boxes on the south end of the oxbow, as well.

Management Recommendations

Oxbow Lagoon falls short of offering a high quality fishery, due to its stunted sunfish population and lack of predatory fish species. With this limitation noted, Natural Resource staff will continue the stocking of predatory largemouth bass with a goal of establishing a predator fish population in the oxbow. Dissolved oxygen levels will be monitored under the ice in winter over the next several years to determine if this could be a potential habitat limitation. If it turns out that a largemouth bass population has not been established based on follow-up sampling, scheduled for approximately 2016, then alternative management strategies for the oxbow should be considered. These would include accepting the limited fishery of the oxbow as it is and shifting management to improving wetlands habitat by introducing native vegetation, control of milfoil, and/or lowering the water levels to promote emergent wetland and submerged aquatic/floating plants.

The fishery could also potentially benefit from more restrictive largemouth bass regulations, such as a increased minimum size (currently 12"), reduced bag limit, or slot limit requiring the immediate release of all bass in a size range, thereby protecting both

smaller fish being recruited into the population and larger fish that are capable of producing the most offspring. Anderson (1976) notes that a 15-18" minimum length on largemouth bass should improve or sustain the quality of fishing under conditions where catchability is high, annual recruitment is low, and/or the there is overpopulation of stunted sunfish prey species. This idea will be revisited following the findings of the 2016 follow-up fish community survey, dependant upon whether or not a bass population can be established in the oxbow based on re-introduction effort.

If future surveys reveal largemouth bass are surviving, but recruitment of younger fish through spawning is low or absent, this would indicate a lack of appropriate spawning habitat in the oxbow. Largemouth bass are flexible in spawning preference, but prefer firmer substrates. Since enhancement of spawning habitat by addition of gravel beds in shallow water is not a realistic option in this natural wetland, this could be a potential limitation of a self-sustaining bass population in the lagoon and their presence could be maintained through periodic stocking, or could be abandoned in favor of managing the oxbow as a natural wetland habitat.

The oxbow could also potentially benefit from stocking of other warmwater fish species. One potential candidate species would be channel catfish (*Ictalurus punctatus*). The main goal, as already outlined, would be to re-establish largemouth bass in the oxbow, but large channel catfish can also serve a role as predators on sunfish in a system. This alternative can be evaluated if a bass population cannot be established.

Increasing public education regarding introduction of aquatic invasive species should be a focus at Oxbow Lagoon, as well as all other park waters. This issue needs to be addressed as part of a wide-reaching campaign to be effective. The presence of red-

eared slider turtles (*Trachemys scripta elegans*) in the lagoon and round gobies (*Neogobius melanostomus*) in other nearby waters are testaments to the fact that human-introduced species have occurred in the past in Cleveland Metroparks. Cleveland Metroparks signs advising visitors not to release pets in our wetlands can be installed at the lagoon. Continued offering of printed and online information focusing on this concern, a well as communication with the media and word of mouth with anglers and other park users, would be an effective multi-pronged approach to combat this problem.

No known current or historic stormwater related water quality impacts have been noted in this waterbody, and in its current state Oxbow Lagoon and fringing wetland will continue to serve as a buffer between the surrounding landscape and the East Branch Rocky River.

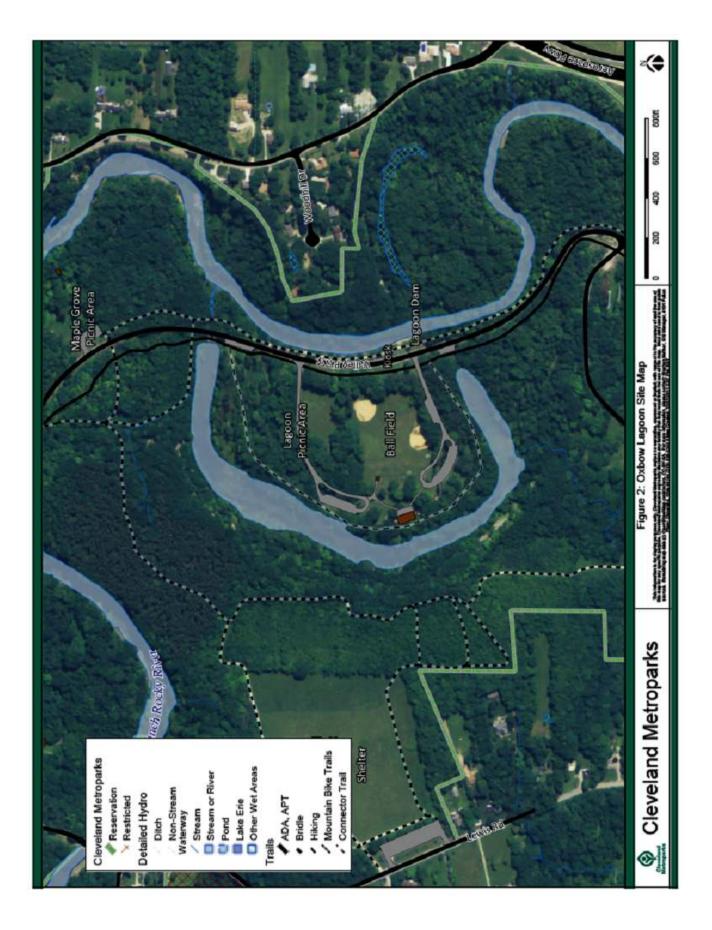
The current overall assessment is that Oxbow Lagoon could use improvement in fulfilling its primary role in the Park District as wetland with the water level increased to provide fishing opportunities, and is currently a "work in progress". Adaptive management practices currently being employed at the oxbow will be assessed periodically in an attempt to improve the quality of the fishery at this venue as much as can reasonably be accomplished. If the fishery continues to be limited despite these measures, then other higher quality fisheries in the area will fulfill this role and the management focus of Oxbow Lagoon should shift primarily towards improving the waterbody as a wetland offering quality wildlife habitat and hydrologic function.

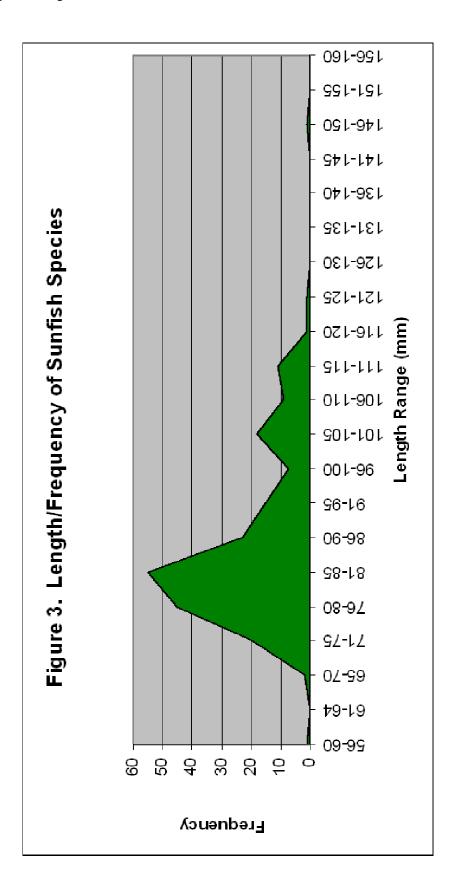
Literature Cited

- Anderson, R. O. 1976. Management of small warmwater impoundments. Fisheries (Bethesda) 1(6):5-7, 26-28.
- Anderson, R. O. 1980. Proportional Stock Density (PSD) and Relative Weight (W_r): interpretive indices for fish populations and communities. Pages 27-33 in S. Gloss and B. Shupp, editors. *Practical fisheries management: more with less in the 1980's*. Proceedings of the American Fisheries Society, New York Chapter, Ithaca, New York.
- Anderson, R. O., and S. J. Gutreuter. 1983. Length, weight, and associated structural indices. Pages 283-300. in Neilsen and Johnson (1983).
- Austin, M., Devine, H., Goedde, L., Greenlee, M., Hall, T., Johnson, L., and Moser, P. 1996. Ohio Pond Management Handbook. Division of Wildlife, Ohio Department of Natural Resources.
- Carlander, K. D. 1977. Handbook of Freshwater Fishery Biology, Volume 2. The Iowa State University Press.
- Cohen, M. K., Lee, N., Bruner, S., Nichol, M. and Guthrie, C. 2008. I FISH NY: Outreach and Education in New York City and on Long Island. Pages 305-310 in R. T. Eades, J. W. Neal, T. J. Lang, K. M. Hunt, and P. Pajak, editors. Urban and community fisheries programs; deveVlopment, management, and evaluation. American Fisheries Society, Symposium 67, Bethesda, Maryland.
- Decker, D. J. and Krueger, C. C. 1993. Communication: Catalyst for Effective Fisheries Management. Pages 55-75 in Kohler and Hubert 1993.
- DesJardine, R. L.. 1983. Fish Stocking, An Aspect of Urban Fisheries Management. Proceedings of the Urban Fishing Symposium of the Fisheries Management and Fisheries Administrators sections of the American Fisheries Society. Pp. 118-131.
- Gabelhouse, D. W. Jr. 1984. A length categorization system to assess fish stocks. North American Journal of Fisheries Management. 4:273-283.
- Gordon, W. G. 1983. Promoting Urban Fishing Programs. Proceedings of the Urban Fishing Symposium of the Fisheries Management and Fisheries Administrators sections of the American Fisheries Society. Pp. 9-13.
- Halko, K. A. 1983. Urban Fishing Programs in the Cleveland Metroparks. Proceedings of the Urban Fishing Symposium of the Fisheries Management and Fisheries Administrators sections of the American Fisheries Society. Pg. 297.

- Heidinger, R. C. 1993. Stocking for Sport Fisheries Enhancement. Pages 309-333 in Kohler and Hubert 1993.
- Kohler, C. C. and Hubert, W. A. 1993. Inland Fisheries Management in North America. American Fisheries Society, Bethesda, Maryland.
- Manfredo, M. J., Harris, C. C., and Brown, P. J. 1983. The Social Values of an Urban Recreational Fishing Experience. Proceedings of the Urban Fishing Symposium of the Fisheries Management and Fisheries Administrators sections of the American Fisheries Society. Pp. 118-131.
- Nielsen, L. A. and D. L. Johnson. 1983. Fisheries Techniques. American Fisheries Society, Bethesda, Maryland.
- Norville, N. L. 1961. Manual and Survey on Small Lake Management; Recreation that Pays its Way. Bulletin No. 8. American Institute of Park Executives, Inc.
- Ohio Environmental Protection Agency. 1999. 1997 Biological and Water Quality Study of the Rocky River and Selected Tributaries. OEPA Technical Report MAS/1998-12-3
- Patterson, R. 1983. Using the Media to Improve Urban Fishing. Proceedings of the Urban Fishing Symposium of the Fisheries Management and Fisheries Administrators sections of the American Fisheries Society. Pg. 293.
- Reynolds, J. B. 1983. Electrofishing. Pages 147-163 in Nielsen and Johnson 1983.
- Smith-Root, Inc. 2007. User's Manual: GPP 2.5, 5.0, 7.5, and 9.0 Portable Electrofishers. Vancouver, WA.
- Wege, G. J. and R. O. Anderson. 1978. Relative weight (W_r): a new index of condition for largemouth bass. Pages 79-91 in G. D. Novinger and J. G. Dillard, editors. New approaches to the management of small impoundments. American Fisheries Society, North Central Division, Special Publication 5, Bethesda, Maryland.
- Weithman, A. S. 1993. Socioeconomics Benefits of Fisheries. Pages 159-175 in Kohler and Hubert 1993.
- Wetzel, R. (1983). *Limnology*. Philadelphia: Saunders.

Table 1. Basic characteristics of the sunfish population based on 10 August 2011 assessment (sampling time = 59 minutes)


Species Total T


Species	Number	Weight (kg)	Average Size (mm)	Average Relative Weight (W _r) ¹
Bluegill, Green and Pumpkinseed sunfish	209	2.97	87.6	115.5

¹ As outlined in Wege and Anderson 1978, Anderson and Gutreuter 1983.

Figure 1. Oxbow Lagoon Subwatershed Map

APPENDIX A: Fish Population Assessment Data Sheets 10 August 2011 (three pages)

Cleveland Metroparks Fish Population Assessment Data Sheet

Location: Oxbow Lugoon (Rody five) - Run /
Time Sampled: 5+4 - 1803 (45min)

Pumplishen Date: 8/10/11

Species: SUNFISH

Propolitions						
Pumplanseed Length (mm) Weight (g)						
41	1060	24				
42	86	13				
43	רל	10				
44	113	33				
45	76	11 6				
46	88	19				
47	%ର	12				
48	73	9				
49	86	11				
50	81	14				
51	81	12				
52	89	13				
53	72	8				
54	86	13				
55	96	<u> </u>				
56	105	ລ5				
57	83	10				
58	82	}]				
59	112.	31				
60	- 79	13				
61	103	ವಿ a				
62	81	10				
63	96	ಾ				
64	78	13				
65	74	9				
66	71	જ				
67	76	9				
68	105	16				
69	フフ	10				
70	88	15				
71	89	רו				
72	76	10				
73	113	27				
74	103	ач				
75	105	a6				
76	95	17				
77	78	9				
78	90	13				
79	86	/3				
80	ଟିତ	14				

010)		
	Length (mm)	Weight (g)	_
81	196	96	Golden Stine
82	266	173	Whik Sudker
83	166	.50	Yellow Bullhaca
84	51	ಎ	Vellow Balheod
85	146	71	Bluegaill
86	91	19	Green Surfish
87	<u> ೨</u> ೦೨	80	White Sucur
88	76	나	Emerally Stinut
89	81	5	Emeral) Shiner
90)년(.JG	Golden Shiner
91	174	79	Golden Shiner
92	91	: 13	Common Camp
93	99	ລາ	Green Sunfish
94	70	4	Golden Shiner
95	100	ର3	Green Sunfish
96	194	24	Yellow Builhuad
97	105	<i>ର</i> ୫	@vegill
98	104	PG	Golden Shinu
99	194	୍ବର 🍦	Golden Shirur
100	123	a)	Golden Shirur
101	46	J	Bluegill
102	84	10	Commen Corp
103	130	ಇ	Common cosp
104	115	19	Golden Shirer
105	76	8	Commo Carp
106			mirror Carp
107	93	13	Comman carp
108	330	97	White Sudor
109	6 5	Ч	Black Croppie
110	1/0	15	Golden Shiner
111	113	ا (ه	Golden Stines
112	100	15	Grein Sunfish
113	100	ان	Common carl
114	173	79	Black Crappie
115	115	ಶ್ವ	Common corp
116	107	21	Common Carp
117	115	23	Common Carp
118	95	15	Comma Coil
119			
120			7

Cleveland Metroparks Fish Population Assessment Data Sheet

Date: 8/10/2011 Location: Oxbow Lagoon (Rody River) - Run)

	Species: ର	bunfish (con	£f	Time Samp		- 1803 1848	(45mm)	
	Humpkins	RRO		Pumpkinse	82.	16-10	Pura plante	eb
1	Length (mm)	Weight (g)	41	Length (mm)	Weight (g)	T 81	Length (mm)	Weight (g)
2	75	10	42	103	23	82	72	7
3	85 75	10	43	85	1)	83	ଟ୍ୟ ଟ5	13
4	80	10	44	86	14	84		16
5	81	10	45	ବର	. 10	85	105	10
6	7박	8	46	78	9	86	81	10
7	87	14	47	103	19	87	85	13
8	76	9	48	76	8	88	89	10
9	107	94	49	80	9	89	90	16
10	80	10	50	86	9	90	109	2 5
11	81	11	51	103	S)	91	85	13
12	89	13	52	105	aı	92	83	. 10
13	80	10	53	80	10	93		
14	860	10	54	93	. 17	94		
15	85	11	55	1,05	35	95		
16	75	9	56	99	ລຸເ	96		
17[75	9	57	80	. 10	97		
18[79	7	58	76	9	98		
19	104	19	59	72	16	99		
20	85	7	60	80	12	100	-	
21	119.	27	61	109	<i>S</i> 6	101		
22	105	18	62	ලිබ	.10	102		
23	115	a8	63	113	30	103		
24	95	19	64	87	14	104		
25	118	a7	65	ଟ୍ୟ	16	105		
26	જે હ	15	66	75	10	106		
27	74	8	67	79	10	107		
28	69	5	68	90	16	108		
29	75	_ 7	69	81	17 %	109		
30	84	14	70	101	18	110		
31	80	19	71	109	<u>ə</u> 1	111		
32	83	11	72	72	7	112		
33	80	11	73	91	15	113		
34	74	7	74	83	19	114		
35	74	10	75	86	14	115		- 3
36	91	14	76	83	9	116		
37	85	//	77	84	11	117		
38	110	98	78	77	8	118		
39	84	11	79	80	10	119		
40 <u> </u>	85_	l II	80	83	12	120		

Cieveland Metroparks Fish Population Assessment Data Sheet

of bookmotor brola

Date: 8/10///

Location: Oxbow Lagoon (Rocky River) -Run a
Time Sampled: Stort - 19:46 (14mm) *

Species: SunRoh

	Length (mm)	Weight (g)	Lengtl	h (mm) Weigh	t (g)	Length (mm)	Weight (g)
1	90	15	41		81	64	3	Empreld Strage
2	80	9	42		82	180	63	Golden Stringer
3	79	9	43		83	a 45	148	White Sudar
4	100	19	44		84	201	79	White Sudor
5	11.0	a 6	45		85	195	.3a	Common Carp
6	79	10	46		86	135	ବୃଷ୍ଟ	Golden Shirur
7	83	10	47		87	125	23	Golden Shiner
8		10	48		88	184	70	Golden Stin
9	75	8.	49		89	H6	20	Common corp
10	82	10	50		90	125	30	Common Corp
11	84	. Ц	51		. 91	115	26	Common car
12		8	52		92	165	, 13	Gollen Shinur
13	80	10	53		93	105	ଚୀ	Golden Shiner
14	97	16	54		94	111	21	Corrmon Carp
15	80	10	55		95	123	18	Golden Shina
16	115	96	56		96	95	13	Common comp
17	80	10	57		97	110	20	Comme Carp
18	84	11	58		98	105	15	Course Colo
19	80	9	59		99			
20	75	8	60		100			
21	76	9	61		101			
22	84	h	62		102			
23	80	9	63		103			
24	83	16	64		104			
25	48 2	10	65		105			
26	84	11	66		106			
27	80	9	67		107			
28	79	9	68		108			
29	86	13	69		109			- 61
30	90	14	70		110			
31			71		111			
32			72		112			
33			73		113			
34			74		114			
35			75		115			
36			76		116			
37			77		117			_
38			78		118			
39			79		119			_
40			80		120			