

CUY-90-19.50/21.30 SAFETY STUDY INTERSTATE ROUTE 90 ODOT DISTRICT 12

November 30, 2015

PREPARED FOR:

Ohio Department of Transportation District 12

5500 Transportation Blvd. Bldg. 2201 Garfield Heights, OH 44125 PREPARED BY:

LJB Inc.

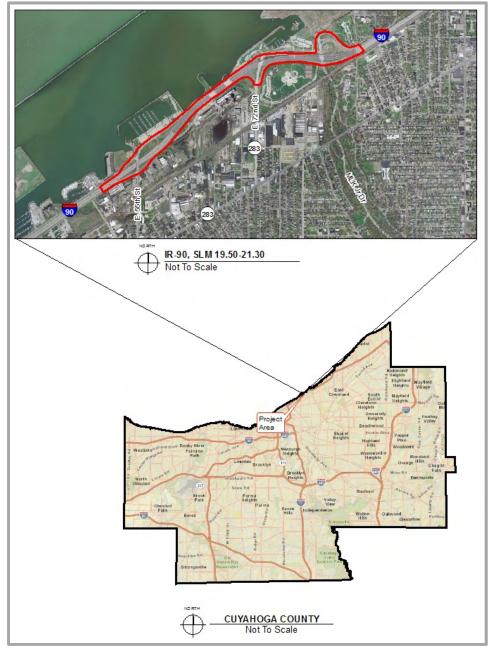
2500 Newmark Drive Miamisburg, OH 45342 (937) 259-5000

• TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
EXISTING CONDITIONS	7
CRASH ANALYSIS	21
COUNTERMEASURES	
RECOMMENDATIONS	41
BENEFIT COST ANALYSIS	46

APPENDICES

PROJECT DOCUMENTATION	A
EXISTING CONDITIONS	В
RAFFIC DATA	C
SIGNAL WARRANTS	D
CAPACITY ANALYSIS REPORTS	E
CRASH DIAGRAMS	F
ISM REPORTS	G
COST ESTIMATES AND BENEFIT-COST REPORTS	Н



EXECUTIVE SUMMARY

STUDY AREA

Interstate 90 is an east/west freeway facility that traverses the east side of downtown Cleveland, Ohio in northern Cuyahoga County and continues east along Lake Erie. The study area includes a 1.8 mile segment of I-90 from SLM 19.50 to 21.30 that includes the three grade-separated interchanges: E. 55th Street, E. 72nd Street (State Route 283), and Martin Luther King Jr. Drive (MLK Drive). A project location map is provided in **Figure 1** with a study area map as **Figure 2**.

FIGURE 1: PROJECT LOCATION MAP

FIGURE 2: STUDY AREA MAP

BACKGROUND

The I-90 study corridor and associated interchanges encompass several lakeshore recreational facilities including the Cleveland Lakefront State Park and Nature Preserve, Intercity Yacht Club, E. 55th Street Marina and Gordon Park. Access to these recreational amenities is provided from N. Marginal Road and Lakeshore Boulevard, forming a collector street network parallel to I-90. Many of the local streets in the study area have pedestrian and bicycle facilities to the various recreational areas from points south of I-90. Details of recent studies or projects in the project vicinity are briefly described below.

Lakefront Greenway and Downtown Connector Study

The Lakefront Greenway and Downtown Connector Study is a concurrent planning study focused on Interstate 90 and the parallel local routes of North and South Marginal Road. The E.55th Street, E. 72nd Street, and MLK Drive interchanges are included within the limits of the Lakefront Greenway Study. The goals of the Lakefront Greenway study are summarized below. Presentation slides from the June 4, 2015 public meeting are included in **Appendix A**.

- > Improve North and South Marginal Road for bicyclists and pedestrians
- > Strengthen connections between lakefront and the near eastside neighborhoods

The Greenway study includes concepts for the E. 72nd Street and MLK Drive interchange areas. These concepts include the following transportation improvements:

Closure of the westbound exit ramp to E. 72nd Street and construction of a roundabout at the E. 72nd Street and North Marginal Road/Lake Shore Blvd intersection

FIGURE 3A: E.72ND STREET CONCEPT (LAKEFRONT GREENWAY)

Closure of the loop ramp from MLK Drive to westbound I-90 and construction of a roundabout at the MLK Drive/Lake Shore Blvd and WB I-90 exit ramp intersection. Traffic destined to westbound I-90 from MLK Drive would use North Marginal Road/Lakeshore Blvd to access the westbound entrance ramp at the E. 72nd Street intersection.

FIGURE 3B: MLK DRIVE CONCEPT PLAN (LAKEFRONT GREENWAY)

North and South Marginal Road Projects

The city of Cleveland has identified rehabilitation projects for North and South Marginal Roads within the study area. These projects have been recently added to the NOACA's Long Range Transportation Plan by Resolution 2015-025. Excerpts from the NOACA's resolution are also included in **Appendix A**.

E.55th Street/Inner-belt CCG4 Project

ODOT has identified a future project, PID 77613 for the widening of E.55th Street and reconstruction of the existing railroad crossing overpass with E.55th Street located just south of I-90. This bridge replacement is required to widen E.55th Street from the existing two-lane section to a four-lane section with bike lanes and to increase the vertical clearance under the bridge.

PROJECT PURPOSE AND SAFETY NEED

The purpose of this study is to evaluate existing safety performance and to identify potential countermeasures to reduce traffic crashes on I-90 and at the interchanges with E. 55th Street, 72nd Street and MLK Drive. The following three segments of I-90 are identified on the 2013 Urban Freeway Excess Locations list based on crashes from 2011 to 2013.

- > Rank #32: SLM 21.01 to 21.11 (MLK Drive interchange)
- > Rank #69: SLM 19.63 to 19.73 (E. 55th Street interchange)
- > Rank #96: SLM 20.61 to 20.71 (E. 72nd Street interchange)

A review of crash data yielded a total of 405 crashes in the study area during a 3-year period between 2011 and 2013. There were two fatal injury crashes in the study area, both occurring on mainline I-90. The following crash types and conditions are over represented in the study area compared to statewide averages for the state highway system, freeway locations (statewide averages shown in parenthesis). Note the statewide crash averages are based on 2008-2012 data whereas the project data encompasses years 2011 to 2013.

>	Fatal crashes: 1 crash or 0.2 percent	(0.3 percent)
>	Injury crashes: 122 crashes or 30.1 percent	(23.8 percent)
>	Rear end crashes: 179 crashes or 44.2 percent	(29.3 percent)
>	Sideswipe - passing crashes: 90 crashes or 22.2 percent	(18.7 percent)

RECOMMENDED COUNTERMEASURES

The following countermeasures are recommended to improve safety performance. Estimated costs reflect construction, design contingency, and engineering contingency in 2015 dollars (not adjusted for inflation).

E. 55th Street

- > Revise lane transition at the railroad crossing to align through traffic in the curb lane. Install overhead lane use signs in advance of pavement transition. The inside through lane in the southbound direction will operate as a defacto left turn lane at the interchange.
- > Revise lane configuration northbound to drop right turn lane at the EB I-90 entrance ramp.
- > Realign the EB I-90 exit ramp opposite Dick Goddard Way approach
- > Signalize the S. Marginal Road intersection as a separate signal phase. Consider converting the S. Marginal Road intersection to RIRO as a medium or long term countermeasure.
- > Estimated cost for short term countermeasures: \$1,609,000.

Interstate 90 at E. 72nd Street

- > Remove the I-90 EB entrance ramp and I-90 WB exit ramp at the E. 72nd Street interchange. Traffic will be diverted to N. Marginal Road to access the MLK Drive interchange.
- > Change the alignment of State Route 283 to follow N. Marginal Road.
- > Extend deceleration length of the EB I-90 exit ramp to MLK Drive.
- > Extend taper length of WB I-90 entrance ramp from MLK Drive.
- Estimated cost for short term countermeasures: \$677,000. Short term improvements to MLK Drive are required before the proposed improvements are implemented at the E. 72nd Street interchange.

Interstate 90 at MLK Drive

> Short Term Countermeasures

- Extend two southbound through lanes on MLK Drive to the St. Clair Avenue bridge
- Widen the WB I-90 exit ramp for dual left turn lanes to MLK Drive
- Signalize the EB I-90 ramp terminal intersection
- Provide dedicated left turn lanes on MLK Drive at the EB ramps and at the N. Marginal Road intersections
- Restrict NB left turn movement at Broad Street intersection during peak hours
- Conduct speed zone study on MLK Drive to determine the appropriate speed limit.
- Estimated cost for short term countermeasures: \$1,017,000

> Long Term Countermeasures

- Convert the WB exit ramp/ N. Marginal Road/Lakeshore Boulevard approaches to a modern roundabout intersection
- Realign Lakeshore Boulevard with future park access. Grade separate Lakeshore Boulevard and WB I-90 ramps with prefabricated arch structure.
- Estimated cost for long term countermeasures: \$4,974,000

EXISTING CONDITIONS

INTERSTATE 90

Existing conditions on I-90 are summarized in **Table 1** with existing conditions diagrams provided in **Appendix B**.

		I-90 (W of E 55th)	I-90 (W of E 72nd)	I-90 (W of MLK Jr Dr)	I-90 (E of MLK Jr Dr)
ODOT Functional					
Classification		Urban Interstate	Urban Interstate	Urban Interstate	Urban Interstate
Posted Speed Limi	t	60 MPH	60 MPH	60 MPH	60 MPH
Roadway Section	EB	5 lanes	4 lanes	4 lanes	4 lanes
Roduway Section	WB	4 lanes	4 lanes	4 lanes	4 lanes
ADT		117,297	123,131	123,076	129,610

TABLE 1: EXISTING ROADWAY CONDITIONS - I-90

I-90 INTERCHANGES

Three grade separated interchanges exist on I-90 within the study limits.

- E. 55th Street Interchange: This interchange is formed with eastbound ramps terminating at E. 55th Street and westbound ramps terminating at N. Marginal Road. The eastbound ramps are configured as a standard diamond and form a signalized intersection on the south side of the I-90 corridor. The westbound ramps intersect N. Marginal Road at an unsignalized intersection on the north side of the I-90 corridor.
- E. 72nd Street Interchange: This interchange features directional, free flow eastbound ramps and westbound ramps configured as a standard diamond that terminate at a stop controlled intersection. Immediately north of the westbound ramp intersection is N. Marginal Road. N. Marginal Road functions as a collector-distributor between E. 72nd Street and MLK Drive in addition to providing access to lakeshore recreational facilities.
- Martin Luther King Jr. (MLK) Drive Interchange: This interchange features eastbound ramps that that are configured as a standard diamond and forms a stop controlled intersection at MLK Drive on the south side of the I-90 corridor. A loop ramp in the NW quadrant provides access to westbound I-90. Note that southbound traffic on MLK Drive must use N. Marginal Road to access I-90 westbound at the E. 72nd Street interchange.

A distinct feature of the I-90 study corridor is the spacing and configuration of the E. 72nd Street and MLK Drive interchanges. The interchanges do not accommodate all traffic movements thus requiring the use of N. Marginal Road as a collector-distributor roadway. The interchanges are spaced less than 2,000 feet apart which creates substandard weave lengths between ramps on I-90 in both the eastbound and westbound directions.

- > The eastbound weave segment is formed by the EB entrance ramp from E. 72nd Street and the EB exit ramp to MLK Drive. The eastbound weave length is approximately 620 feet.
- The westbound weave segment is formed by the WB entrance ramp (loop ramp) from MLK Drive and the WB exit ramp to E. 72nd Street. The westbound weave length is approximately 500 feet.

Capacity analysis was performed to determine the operational performance of the weave areas. For the purpose of analysis, it was assumed that all traffic in the weave merge area crosses between the mainline and ramps. Results indicate that the eastbound weave performs at LOS E during the PM peak hour with a v/c ratio of 0.82. The westbound weave performs at LOS E during the AM peak hour with a v/c ratio of 0.84. Results are summarized in **Table 2.** The letter denotes level of service with the number value denoting density.

Section	Period	2034 No Build	
I-90 EB between E 72nd and MLK Jr Dr	AM	C / 22.3	
	PM	E / 35.8	
I-90 WB between	AM	E / 36.3	
MLK Jr Dr and E 72nd	PM	C / 25.8	

TABLE 2: FREEWAY WEAVING ANALYSIS RESULTS

All freeway segments and ramp merge and diverge points operate at LOS D or better. Details of the No Build capacity analyses are included in **Appendix E**. However, queueing onto mainline I-90 is observed during the AM peak hour at the MLK Drive interchange on both the EB and WB exit ramps. The constrained conditions of MLK Drive corridor influence the queueing onto mainline, further details are provided under the MLK Drive section of the report (p10-14).

PHOTO 1 - I-90 WB RAMP TO MLK, AM PEAK QUEUES

PHOTO 2 - I-90 EB EXIT RAMP TO MLK, AM PEAK QUEUES

E. 55TH STREET

E. 55th Street is an Urban Minor arterial with a posted speed limit of 35 miles per hour. Through the interchange area, E. 55th Street is a four-lane, undivided section with directional, on-street bicycle lanes. The eastbound ramps to/from I-90 intersect E. 55th Street at a signalized intersection. Immediately south of the EB ramp terminal intersection is a second signalized intersection formed by S. Marginal Road (west leg) and Dick Goddard Way (east leg). The two intersections are operated with a single signal controller with the following features:

- Left turn movements from E. 55th Street to the EB entrance ramp, Dick Goddard Way and S. Marginal Road are made from the inside through lane. There are no dedicated left turn lanes on E. 55th Street.
- E. 55th Street narrows to a two-lane section 800 feet south of the I-90 interchange as it passes under a railroad overpass. South of the overpass, E. 55th Street transitions back to a four-lane section. The merge reduces capacity on E. 55th Street resulting in rolling queues during peak hours that extend through the I-90 EB ramp intersection.
- > The westbound approach of Dick Goddard Way has a channelizing right turn movement that is not controlled by the traffic signal, rather is stop controlled. Vehicles were observed to make the westbound right turn from Dick Goddard Way and continue onto the eastbound entrance ramp to I-90 without stopping.
- > The eastbound exit ramp from I-90 is channelized for right turn movements. The supplemental signal heads are positioned such that right turning vehicles at the stop bar do not have clear view of the signal heads. Additionally, the obtuse approach angle of the channelizing right turn lane obstructs the line of sight of vehicles approaching from the north.
- > The westbound ramps to/from I-90 intersect N. Marginal Road on the north side of the interchange at an unsignalized intersection. The westbound exit ramp has a second left turn lane (100 ft length).

PHOTO 3: SOUTHBOUND E. 55[™] STREET AT THE EB RAMP INTERSECTION

The combined signalized intersections on E. 55th Street currently operate with several approaches at LOS F indicating an over capacity condition. See Summary of Supplemental Traffic Studies section for additional details.

E. 72ND STREET (SR 283)

E. 72nd Street is an Urban Minor arterial with a posted speed limit of 35 miles per hour. Through the interchange area, E. 72nd Street is a two-lane, divided section with directional, on-street buffered bicycle lanes. This interchange features a directional exit ramp from EB I-90 to SB E. 72nd Street and a directional entrance ramp from NB E. 72nd Street to EB I-90. Traffic north of I-90 must use N. Marginal Road to access I-90 EB from the MLK Drive interchange. There are ramps configured as a standard diamond for WB I-90 traffic that form a stop controlled intersection. Immediately north of the westbound ramp intersection is N. Marginal Road.

PHOTO 4: NORTHBOUND E. 72ND STREET APPROCHING I-90 INTERCHANGE


MARTIN LUTHER KING JR. (MLK) DRIVE

MLK Drive is an Urban Minor arterial with a posted speed limit of 35 miles per hour. The MLK Drive interchange serves as the primary connection between I-90 and the University Circle area.

Intersection Conditions

The MLK Drive interchange area is directly influenced by the following six intersections spaced within a distance of 1,300 feet, as shown in **Figure 4**.

FIGURE 4: MLK DRIVE INTERSECTION CONDITIONS

1. I-90 WB exit ramp intersection

A three-leg intersection formed by MLK Drive as the south leg, Lakeshore Drive as the north leg, and the WB exit ramp as the east leg. The WB exit ramp is the free flow movement with MLK Drive and Lakeshore Drive approaches under stop sign control. The design of this intersection is nonstandard but right-of-way assignments are designed to accommodate peak hour traffic volumes.

2. I-90 WB entrance ramp diverge

The loop ramp to WB I-90 diverges from MLK Drive just south of the WB exit ramp intersection. The ramp is a free flow movement from MLK Drive but can be impacted by NB queues that extend back from the WB exit ramp intersection.

3. N. Marginal Road intersection

A three-leg intersection formed by MLK Drive as the north and south legs with N. Marginal Road as the west leg, positioned 275 feet south of the WB ramp terminal intersection. The EB approach of N. Marginal Road is under stop sign control. Left turn movements to N. Marginal Road from MLK Drive are made from the inside through lane.

4. **I-90 EB ramp terminal intersection**

A four-leg intersection formed by MLK Drive as the north and south legs and the I-90 EB exit ramp and the I-90 EB entrance ramp as the east and west legs. The EB exit ramp operates under stop sign control with the MLK Drive approaches under free flow conditions.

5. Broad Avenue intersection

A three-leg intersection formed by MLK Drive as the north and south legs and Broad Avenue as the west leg. There is a northbound left turn lane on MLK Drive at the Broad Avenue intersection. This intersection operates under traffic signal control. Broad Avenue is a low volume street connecting to E. 82nd Street and St. Clair Avenue. The traffic signal is actuated by vehicle calls on Broad Avenue.

6. E. 88th Street intersection

A three leg intersection formed by MLK Drive and E. 88th Street as the east leg. E. 88th Street provides access to the Cleveland Cultural Gardens. The WB approach operates under stop sign control. There is a southbound left turn lane on MLK Drive at this intersection. The intersection is located 275 feet south of Broad Avenue.

Typical Section Conditions

Through the interchange area, MLK Drive is a four-lane, divided section with a center median island.

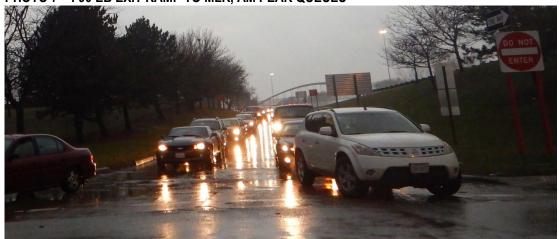
- > The total pavement width is approximately 72 feet between N. Marginal Road and the EB ramp terminal intersections.
- > Under the I-90 overpass, there is sidewalk on both sides of MLK Drive of varying width.
- > South of the EB ramp terminal intersection, the pavement width begins to transition.
- > Under the RR overpass, the total pavement width is approximately 42 feet. There is 10 foot wide sidewalk on both sides of MLK Drive south of the railroad overpass.

Operational Conditions

During field observations, queue spillback onto mainline I-90 extending from the WB exit ramp at MLK Drive was observed during the AM peak hour.

PHOTO 5 -I-90 WB EXIT RAMP APPROACHING MLK DRIVE, AM PEAK QUEUES

PHOTO 6 – I-90 WB MAINLINE AT MLK INTERCHANGE, AM PEAK QUEUES

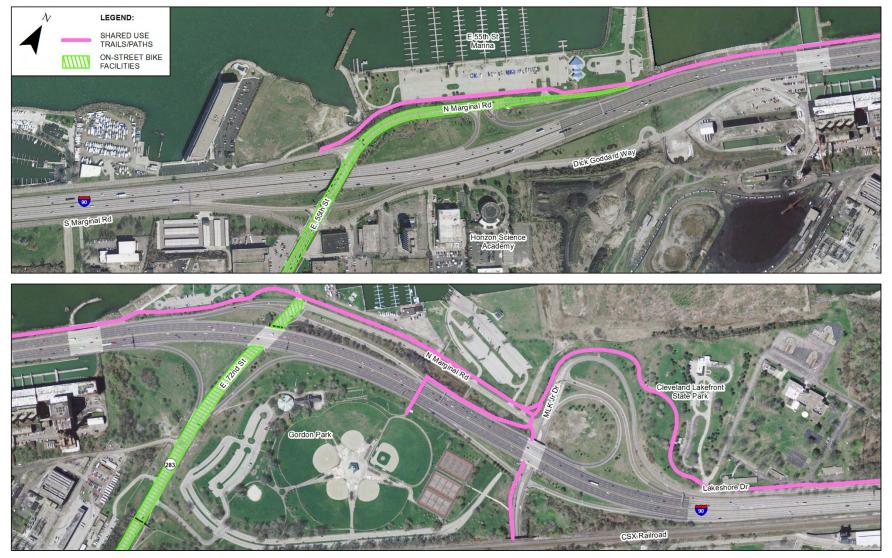


Factors influencing performance of the WB exit ramp are tied directly to lane capacity of the ramp and downstream constraints on MLK Drive, as described below.

- > Single lane conditions on the WB exit ramp restrict the amount of traffic serviced by the WB ramp intersection at MLK Drive. There are two southbound lanes on MLK Drive that could receive traffic flow from two lanes on the WB exit ramp.
- > Traffic from the WB exit ramp was observed to stop to allow traffic northbound on MLK Drive or southbound on Lakeshore Boulevard to traverse the intersection. Since the north/south movements are stop controlled, queues form during peak hours as a result of the

continuous flow of traffic from the WB exit ramp to MLK Drive. Motorists from the WB ramp are stopping or slowing to provide a gap in the traffic flow.

- > The most significant capacity constraint on MLK Drive is the southbound lane merge that occurs just south of the EB ramp intersection. Traffic from the WB exit ramp utilizes the inside southbound lane due to the downstream merge condition. Right turning traffic from the EB exit ramp fills the southbound curb lane only to merge with the southbound flow from the WB exit ramp. The result is a high volume of southbound traffic converging into a single lane just 300 feet south of the interchange.
- > There is no dedicated turn lane on MLK Drive for southbound left turn movements onto the EB entrance ramp. Vehicles must wait in the median opening for a gap in opposing northbound traffic. If multiple left turning vehicles are waiting for a gap, southbound queues will form behind the waiting vehicles which impacts flow from the WB exit ramp.
- > Traffic signal operation at Broad Avenue is side-street actuated. The AM peak hour volume on Broad Avenue is low; however, when the signal serves minor street traffic, southbound queues on MLK extend farther towards the I-90 interchange.
- > Traffic on the EB exit ramp was observed to queue up the ramp toward mainline I-90. Traffic exiting EB I-90 at MLK Drive is forced to decelerate quickly through the I-90 weave segment to avoid extended queues on the ramp making this maneuver more challenging.


PHOTO 7 – I-90 EB EXIT RAMP TO MLK, AM PEAK QUEUES

The current conditions on MLK Drive result in poor levels of service for the stop controlled movements at the WB exit ramp and EB exit ramp intersections. Long queues also extend from the WB exit ramp intersection despite the free flow condition on the ramp approach. Additional details related to the No Build levels of service can be found in the Summary of Supplemental Traffic Studies section of this report.

TRAIL SYSTEM

Figure 5 shows the existing shared use/recreational paths and on-street bicycle facilities in the study area. There is a pedestrian bridge that spans I-90 between E. 72nd Street and MLK Drive, providing connection between Gordon Park and the lakeshore destinations. MLK Drive is the only local street in the study area without on-street bicycle facilities. Cyclists use the sidewalk/shared use paths along the west side of MLK Drive.

FIGURE 5: EXISTING MULIT-MODAL FACILITIES

DATA COLLECTION

Current traffic data was obtained from various sources for use in this study, as described below. AM and PM peak hour traffic volumes projected for design year 2034 are shown in **Figures 6A through 6D.** Traffic data reports used in preparation of this study are provided in **Appendix C.**

- I-90 Mainline: Directional ADT on mainline I-90 was obtained from a permanent count station located at SLM 24.33 (east of the study area). Data was from a weekday in May 2014. ADT within the project area was determined based on ODOT collected ramp counts (dated 2011, 2013) between the permanent count station and East 55th Street.
- I-90 ramps: Directional hourly ramp volumes were obtained from short term count stations. A total of 21 hourly ramp counts were obtained, all of which were collected by ODOT between 2011 and 2013. Each count includes a minimum of 24 consecutive hours of data.
- E. 55th Street: Turning movement counts were conducted on E. 55th Street in October 2014 as part of the Lakefront Greenway and Downtown Connector Study. Count data at the E. 55th Street intersections with N. Marginal Road, S. Marginal Road, and the I-90 EB ramps was used in preparation of this safety study.
- MLK Drive: A 24-hour turning movement count was conducted on October 30, 2014 at the intersection of MLK Drive and the I-90 EB ramps. Turning movement volumes at the I-90 WB ramp were estimated based on available ramp volumes and 15-minute volume counts conducted during field inspection.
- N. Marginal Road: Traffic count data was not available for specific locations on N. Marginal Road. Traffic volumes at intersections were estimated using ramp data and count data from adjacent intersections. Traffic on N.Marginal Road is expected to vary seasonally with recreational use of lakefront park facilities.

The following steps were included in the preparation of design year traffic volume forecasts:

- > Existing volumes were used to determine the AM and PM peak hours.
- > Existing volumes were adjusted to reflect seasonal conditions of the study area using ODOT recommended seasonal adjustment factors for all vehicle classes on an urban interstate route.
- Existing volumes were adjusted for seasonal variations and were then forecast to design year 2034 using growth factors provided by NOACA. Growth rates summarized in Appendix C, listed in percent growth per year, were applied to volumes in the study area to obtain design year volumes. Ramps and freeway segments not listed are projected to have no growth (0 percent). All service/local streets are projected with no growth.

Preliminary development of potential countermeasures identified in this study should be confirmed using existing traffic data at all locations. Estimated traffic volumes used at some locations within the study area should be supplemented with seasonal traffic data.

NO BUILD CAPACITY ANALYSIS

Capacity analyses were performed at key locations in the study area to assess existing operations and to identify critical deficiencies that may contribute to safety issues. Analyses were prepared for No Build conditions using 2034 AM and PM peak hour volumes for the analysis modules listed below. Analysis methodology and detailed output reports for all capacity analyses are included in **Appendix E.**

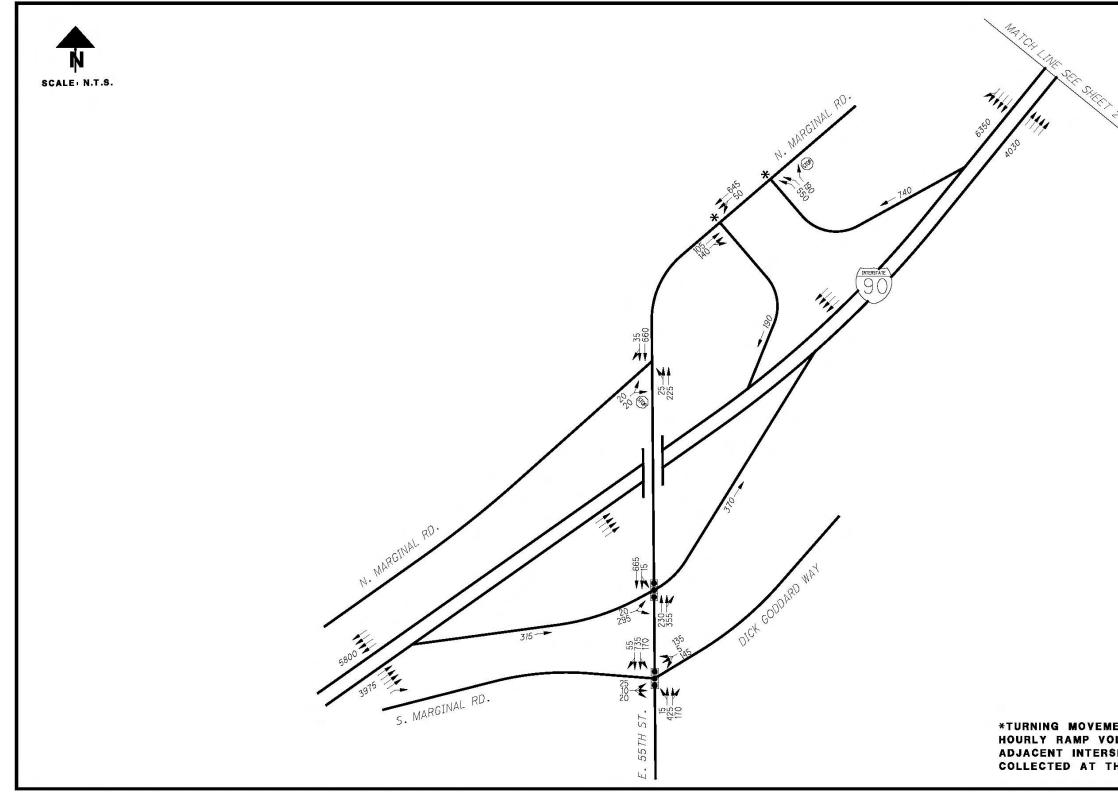


FIGURE 6A: 2034 AM PEAK HOUR TRAFFIC VOLUMES

*TURNING MOVEMENT VOLUMES WERE ESTIMATED BASED ON ODOT Hourly Ramp volumes and available turn count data from Adjacent intersections. Turning movement count was not Collected at these intersections.

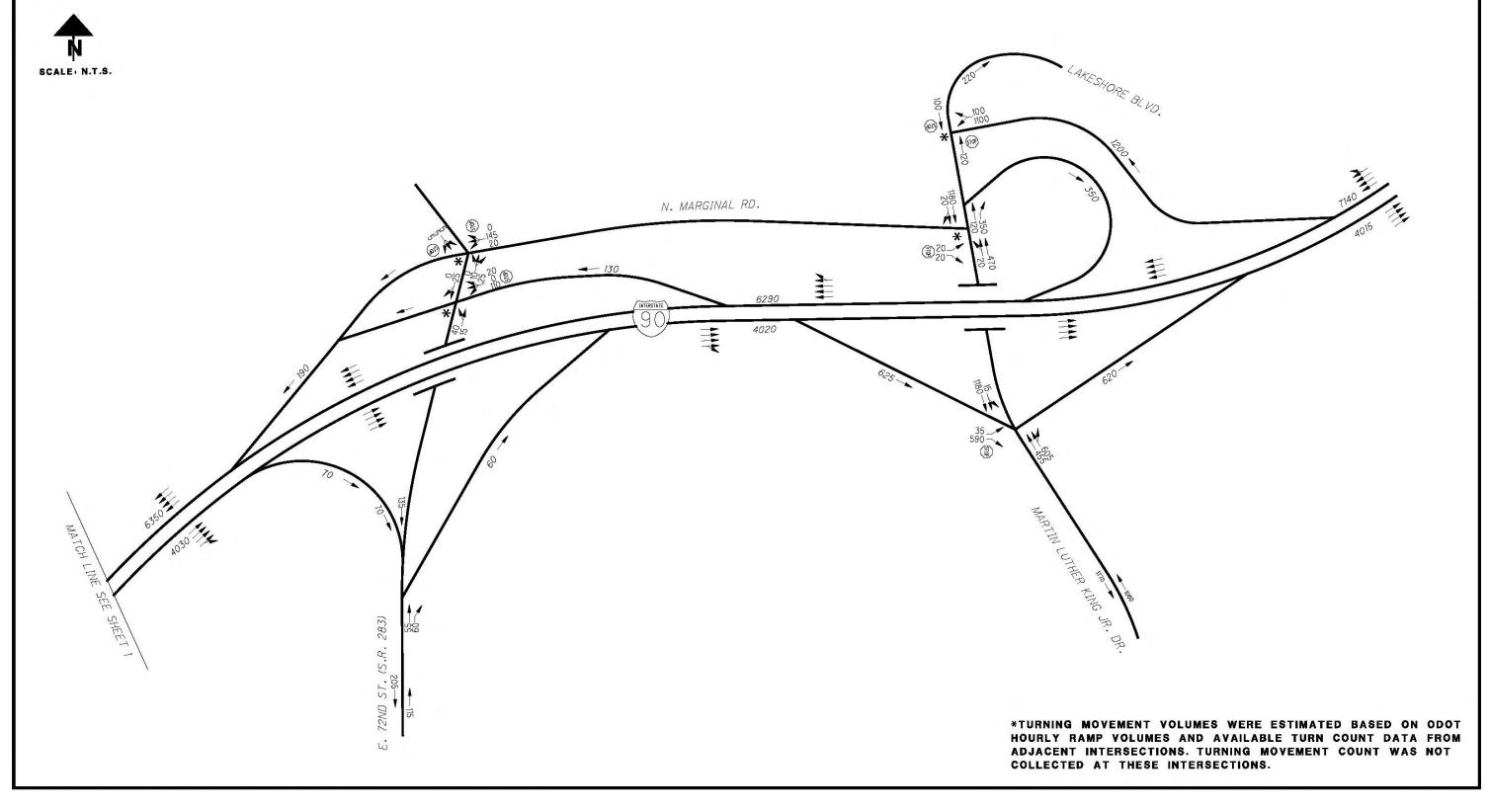


FIGURE 6B: 2034 AM PEAK HOUR TRAFFIC VOLUMES

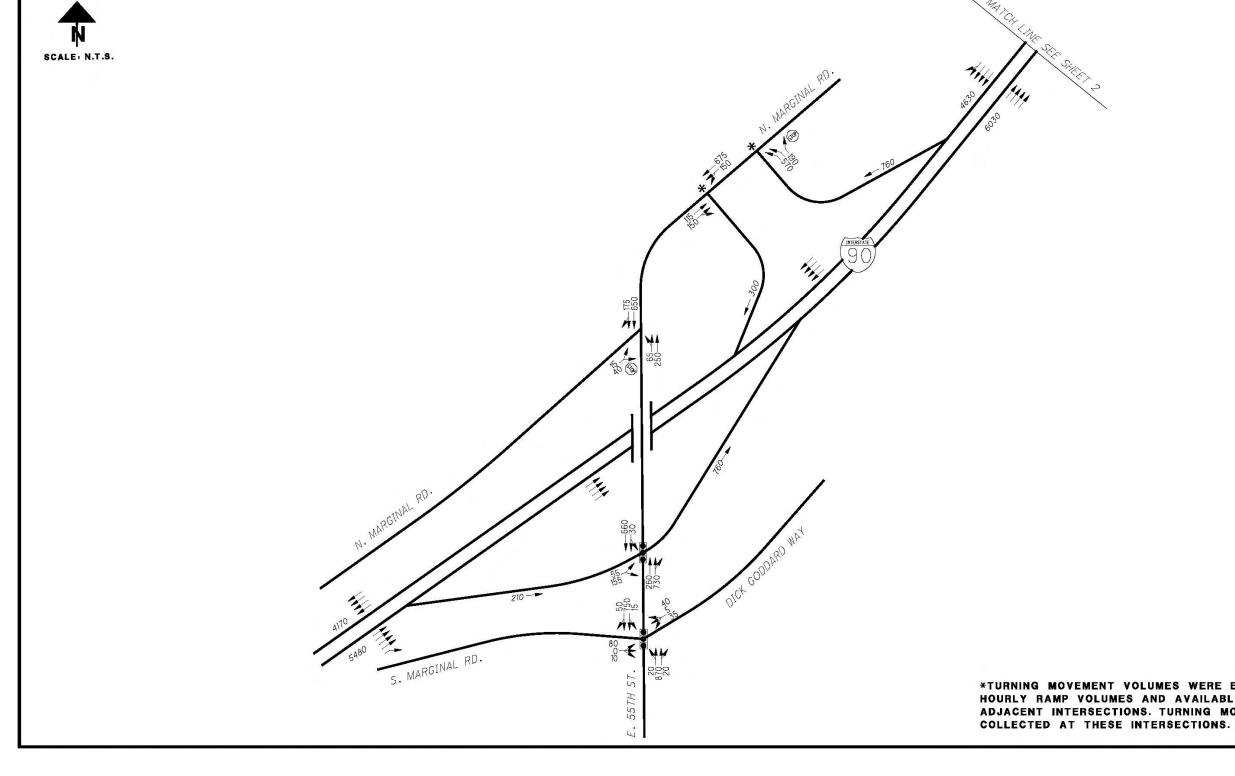


FIGURE 6C: 2034 PM PEAK HOUR TRAFFIC VOLUMES

*TURNING MOVEMENT VOLUMES WERE ESTIMATED BASED ON ODOT Hourly Ramp volumes and available turn count data from Adjacent intersections. Turning movement count was not

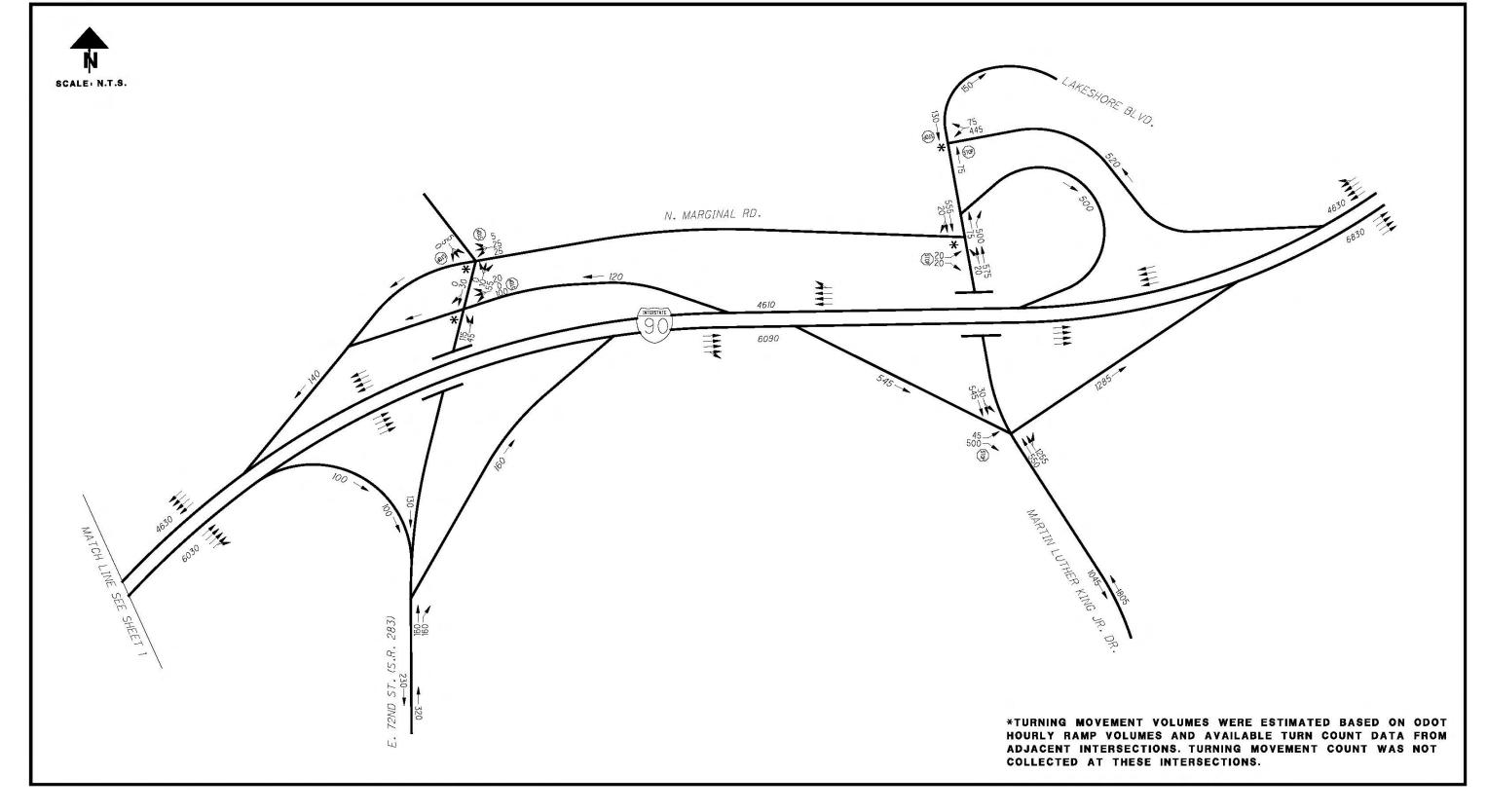


FIGURE 6D: 2034 PM PEAK HOUR TRAFFIC VOLUMES

CRASH ANALYSIS

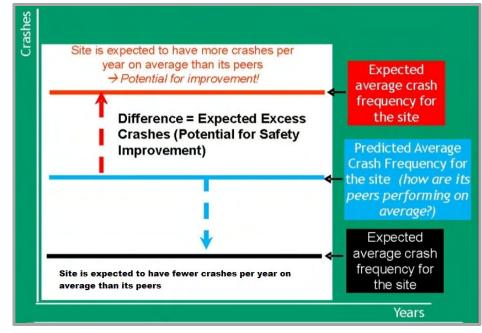
> Total crashes: 405 total crashes

CRASH DATA

Crash data was furnished by the Ohio Department of Transportation for the study area, encompassing a three-year period between 2011 and 2013. The OH-1 crash report for each documented crash was reviewed to confirm accuracy and to locate crashes properly within the study limits. Crash diagrams are provided in **Appendix F.** Noteworthy crash statistics for the three-year period are summarized below.

- C		
>	Fatal crashes: 1 crash or 0.2 percent	(0.3 percent)
>	Injury crashes: 122 crashes or 30.1 percent	(23.8 percent)
>	Rear end crashes: 179 crashes or 44.2 percent	(29.3 percent)
>	Sideswipe - passing crashes: 90 crashes or 22.2 percent	(18.7 percent)

HIGHWAY SAFETY MANUAL


The predictive method described in Part C of the Highway Safety Manual provides steps to estimate the expected average crash frequency of a site for a given time period, geometric design, traffic control features, and traffic volumes. The expected average crash frequency (Nexpected) is estimated using a predictive model estimate of crash frequency for a specific site type (Npredicted) together with observed crash frequency (where available).

- Predicted average crash frequency: This step involves determination of the predicted crash frequency which reflects how a site would be expected to perform relative to 1,000 similar sites. Calculation of predicted crash frequency utilizes Safety Performance Functions (SPF) for a base condition. Crash Modification Factors (CMF) are applied to account for specific site characteristics that differ from the base condition. A state-level calibration factor is then applied to normalize the base condition to localized conditions. The resulting value is the Predicted Crash Frequency (Npredicted)
- Expected average crash frequency: The next step involves calculation of the expected average crash frequency which reflects average performance of the site over an extended period of time based on actual crash history. This step incorporates the Empirical Bayes (EB) method which combines actual (observed) crash history of the study site with predicted average crash frequency. These values are weighted based on an over-dispersion parameter (k) that is the measure of the strength of the model (safety performance factors). The resulting value is the expected average crash frequency (Nexpected)

EXPECTED EXCESS CRASH RESULTS

The difference between the predicted and expected average crash frequencies is termed the "Expected Excess Crashes" for the site, as shown in **Graph 1**. If the expected average crash frequency is greater than the predicted average crash frequency, then the site has potential for safety improvement. If expected frequency is less than predicted frequency, then the site is expected to experience fewer crashes per year on average than its peers.

GRAPH 1: EXPECTED EXCESS CRASHES

The HSM predictive method for urban/suburban arterials was applied to E. 55th Street and to MLK Drive, as described below. A detailed overview of the Highway Safety Manual procedures and HSM output reports are provided in **Appendix G**.

> E. 55th Street: One (1) intersection element for the I-90 EB ramp/Goddard Way/S. Marginal Road intersection. Results summarized in **Table 3** conclude that the expected crash frequency at this intersection is greater than predicted, indicative of the potential for safety improvement.

	E 55 th Street @ I-90 EB ramp/Goddard Way/S. Marginal
Predicted Average Crash Frequency (N _{predicted})	12.81
Expected Average Crash Frequency – Existing Conditions (N _{expected} , existing)	13.87
Expected Excess Crashes	1.06
Potential for Safety Improvement?	Yes

TABLE 3: HSM RESULTS FOR EXISTING CONDITIONS - E. 55TH STREET

MLK Drive: Two (2) intersection elements for the I-90 WB ramp/N. Marginal and I-90 EB ramp intersection and one segment for MLK Drive between the EB I-90 ramp intersection and E. 88th Street. Results summarized in **Table 4** conclude that the expected crash frequency is greater than predicted for the EB ramp intersection and the segment south of the intersection, suggesting the potential for safety benefit.

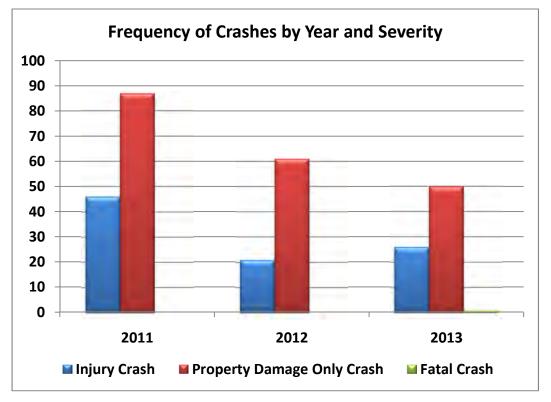
Crash frequency is slightly below the predicted crash frequency for the WB ramp intersection.

	MLK Drive Total	Intersection: MLK Drive @ I-90 WB Ramp/N.Marginal	Intersection: MLK Drive @ I-90 EB Ramp	Segment: MLK Drive south of I-90 EB Ramp intersection
Predicted Average Crash Frequency (N _{predicted})	14.24	7.94	5.85	0.45
Expected Average Crash Frequency – Existing Conditions (N _{expected} , existing)	20.89	7.42	12.67	0.81
Expected Excess Crashes	6.65	-0.52	6.82	0.36
Potential for Safety Improvement?	Yes	No	Yes	Yes

TABLE 4: HSM RESULTS FOR EXISTING CONDITIONS - MLK DRIVE

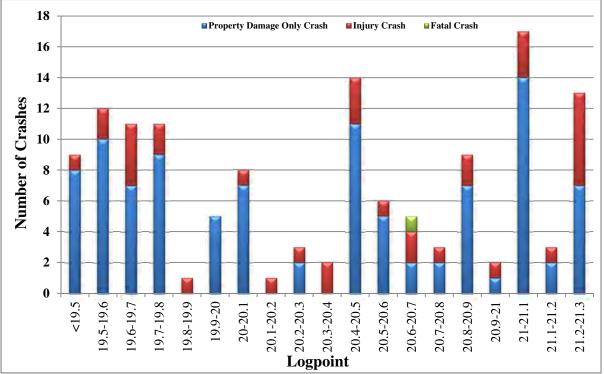
OBSERVED CRASH HISTORY

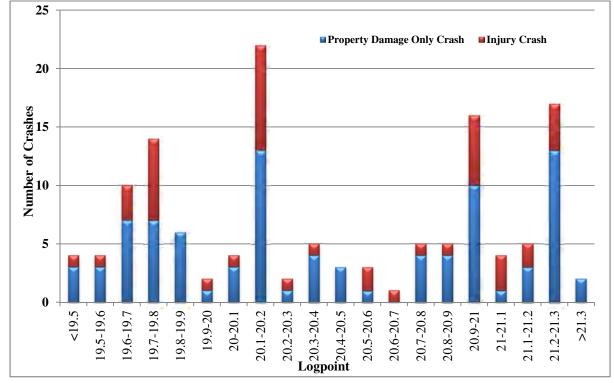
The 405 total reported crashes were distributed within the study area as follows:


- > I-90 Mainline (including ramp crashes not intersection related): 292 crashes
- > E 55th Street (including N. Marginal Road): 39 crashes
- > E 72nd Street: 14 crashes
- > MLK Drive: 60 crashes

I-90 corridor

There were 292 crashes reported on mainline I-90 during the three-year analysis period. Noteworthy statistics are summarized below.

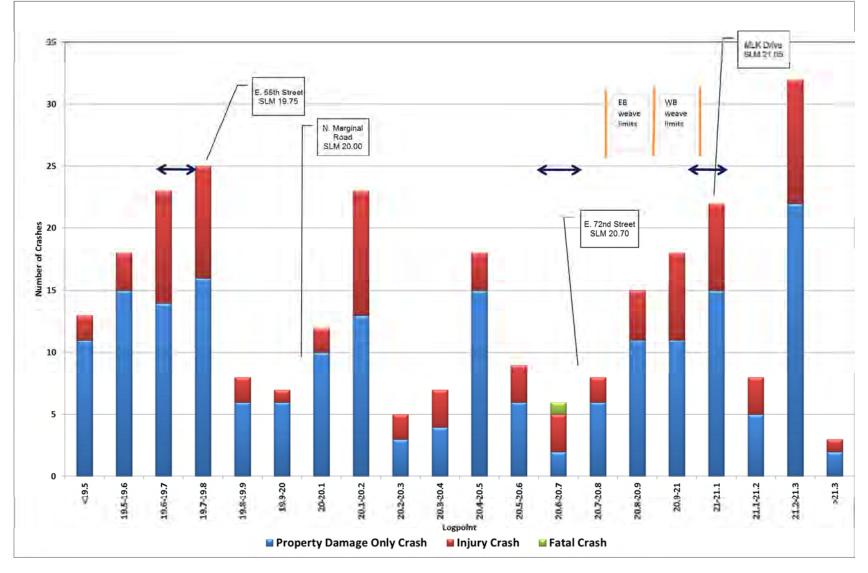

- > 91% of the mainline crashes were one of three types of crashes: rear end (102 or 35%), fixed object (87 or 30%) or sideswipe passing (77 or 26%).
- > A disproportionate high percentage of crashes (46 percent or 133 crashes) occurred in 2011. The other two years experienced 28 percent and 26 percent of the total crashes
- > 42 percent of crashes on mainline I-90 occurred on non-dry pavement surface (wet, snow or ice).
- > Two percent of crashes involved speeds greater than 65 miles per hour
- A fatal injury crash was reported on eastbound I-90 at SLM 20.64, between the ramps at the E. 72nd Street interchange. The crash occurred on Thursday, May 30, 2013 during the 10AM hour under clear and dry conditions. The crash involved a pedestrian that was struck while attempting to assist a stalled vehicle from the travel lanes. The OH-1 report is provided in Appendix F.
- > 32 percent of mainline crashes resulted in injury. **Graph 2** shows the distribution of crash severity over the 3-year period.



GRAPH 2: MAINLINE I-90 CRASHES BY YEAR AND SEVERITY

GRAPH 4: MAINLINE I-90 WESTBOUND CRASHES

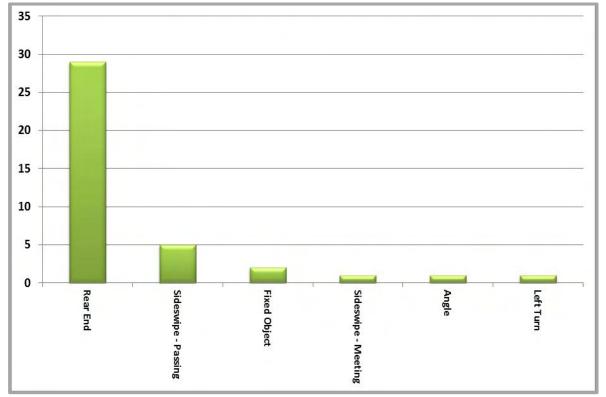
The locations of crashes on the I-90 corridor changed as a result of the crash review process. The following three segments of I-90 are identified on the 2013 Urban Freeway Excess Locations list based on crashes from 2011 to 2013:


- > Rank #32: SLM 21.01 to 21.11 (MLK Drive interchange)
- > Rank #69: SLM 19.63 to 19.73 (E. 55th Street interchange)
- > Rank #96: SLM 20.61 to 20.71 (E. 72nd Street interchange)

Graph 5 shows the revised crashes by location. The horizontal arrows (blue) indicate the high priority locations from the 2013 Urban Freeway Excess location analysis listed above. The EB and WB weaves between MLK Drive and E. 72^{nd} Street are shown as vertical lines (orange).

The high crash locations based on the histogram are east and west of the MLK interchange and the E. 55th Street interchange. The weave between MLK Drive and E. 72nd Street may create congestion that contributes to crashes near SLM 20.45 and at SLM 21.25.

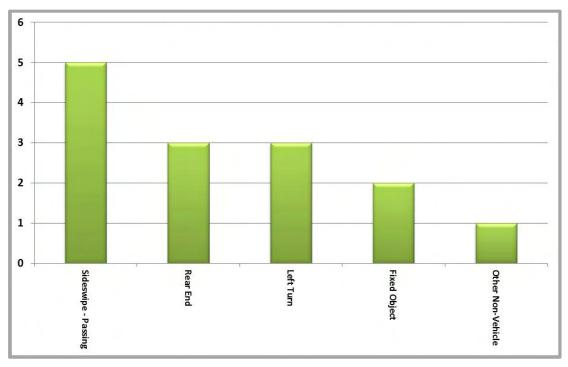
GRAPH 5: MAINLINE I-90 CRASH LOCATION



E. 55th Street

There were 39 crashes reported on E. 55th Street during the three-year analysis period. Noteworthy statistics are summarized below.

- > 75 percent of crashes on E. 55^{th} Street were rear end crashes.
- > Crashes were evenly distributed by year and day of week
- > 75 percent of crashes occurred during daylight hours, 61 percent occurred during clear weather and 69 percent on dry pavement
- > 87 percent of the crashes occurred at an intersection with 80 percent occurring at the E. 55th Street intersection with the EB ramp/Goddard Way/S. Marginal Road. The remaining 7 percent of intersection crashes occurred at the WB ramp intersection with N. Marginal Road.

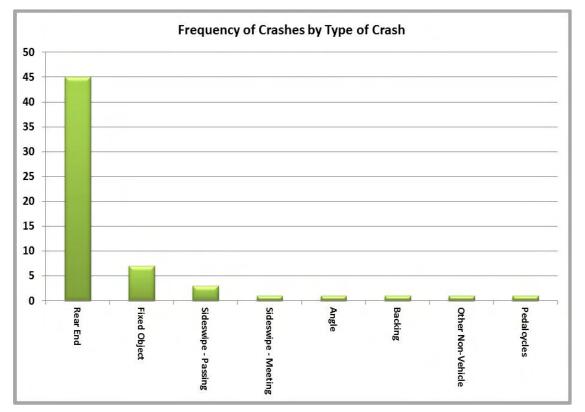

GRAPH 6: E. 55TH STREET FREQUENCY OF CRASHES BY CRASH TYPE

E. 72nd Street

There were 14 crashes reported on E. 72nd Street during the three-year analysis period. Noteworthy statistics are summarized below.

- > 42 percent of crashes resulted in injury
- > 35 percent of crashes occurred on Monday
- > Crash types included sideswipe passing, rear end, left turn, and fixed object
- > Greater than 70 percent of crashes occurred during daylight hours with clear weather and dry pavement.
- > 6 of the 14 crashes (43 percent) occurred on E. 72nd Street at the driveway to Gordon Park. A concrete median allows ingress/egress but left turn lanes on E. 72nd Street do not exist.

GRAPH 7: E 72ND STREET FREQUENCY OF CRASHES BY CRASH TYPE


MLK Drive

There were 60 crashes reported on MLK Drive during the three-year analysis period. Noteworthy statistics are summarized below.

- > 75 percent of crashes were rear end crashes (45 crashes). The rear end crashes were distributed at the following locations
 - 32 rear end crashes at the EB ramp terminal intersection. 30 of those crashes occurred on the EB ramp approaching the intersection. 2 occurred southbound on MLK Drive approaching the intersection
 - 7 rear end crashes at or between the Broad Avenue and E. 88th Street intersections

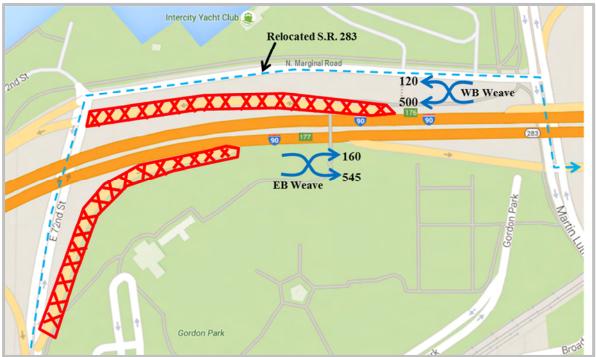
- 4 rear end crashes at or between the WB ramp terminal and N. Marginal Road intersection
- 2 rear end crashes at the SB lane merge
- MLK Drive experiences queueing during weekday peak hours, primarily in the southbound direction during the AM peak and northbound direction during the PM peak. 3 rear-end crashes were observed in the southbound direction of MLK drive during weekday AM peak hours. No rear-end crashes were observed in the northbound direction during weekday PM peak hours.
- > 12 percent of crashes were fixed object (7 crashes). 3 of the 7 fixed object crashes involved the center concrete median island.
- > A bicycle crash was reported on MLK Drive near the intersection with E. 88th Street. This was a non-injury crash.

GRAPH 8: MLK DRIVE FREQUENCY OF CRASHES BY TYPE

OUNTERMEASURES

Mitigation of safety issues on I-90 is to be accomplished by improving ramp capacity and eliminating substandard weave conditions that exist on the I-90 corridor. Due to the proximity of the intersections on the local roadway network and the extended queues that impact adjacent intersections, safety countermeasures are expected to be a corridor-level improvement at specific interchanges. Capacity upgrades that add lanes to mainline I-90 are not a part of this scope of work.

I-90 CORRIDOR


The distance between the MLK Drive interchange and the E. 72nd Street interchange is less than 2,000 feet, resulting in substandard lengths for weaving movement to/from I-90.

Countermeasures are proposed to mitigate crashes in the weave segments of I-90 between E. 72^{nd} Street and MLK Drive. A total of 12 westbound crashes and 17 eastbound crashes are expected to be mitigated by removing the EB entrance ramp and the WB exit ramp at the E. 72^{nd} Street interchange. Removal of the EB entrance ramp and WB exit ramp at E. 72^{nd} Street is proposed to eliminate the substandard weave on I-90 as shown in **Figure 7**. Justification for this recommendation includes the following:

- > Ramp volumes. The peak hour volume (PM) on the EB entrance ramp is 160 vehicles per hour. The peak hour volume (AM) on the WB exit ramp is 130 vehicles.
- Movements not accommodated at the E. 72nd Street interchange are provided at the MLK Drive interchange via N. Marginal Road. The 130 vehicles per hour (VPH) on the WB exit ramp will be redirected to exit at MLK Drive and travel west on N. Marginal Road to E. 72nd Street. Similarly, the 160 VPH on the EB entrance ramp will be redirected east on N. Marginal Road to MLK Drive where they will access I-90 from the EB entrance ramp.
- > Diversion of traffic to the MLK Drive is expected to increase congestion at the MLK Drive interchange unless capacity improvements are implemented. See the MLK Drive countermeasure discussion for additional information.
- > Extend deceleration length of the EB exit ramp and acceleration length of the WB entrance ramp at the MLK Drive interchange. With closure of the ramps at the E. 72nd Street interchange, additional deceleration and acceleration lengths can be provided. With the EB entrance ramp from E. 72nd Street closed, the deceleration length can be extended from 475 feet to 800 feet with use of the existing pavement.
- > The closure of the I-90EB entrance ramp from E.72nd Street requires relocation of S.R. 283 to N. Marginal Road. Figure 7 shows the proposed relocation of S.R. 283. This relocation to establish new alignment for a State Route will require action by the ODOT Director.

Note: Weave volumes (estimated) are shown for PM peak hour; all ramp traffic is assumed to weave.

An alternative to the eastbound ramp closure at E. 72^{nd} Street was evaluated which included converting the EB ramps at E. 72^{nd} Street to a diamond ramp configuration and constructing an EB collector-distributor roadway between E. 72^{nd} Street and MLK Drive (**Figure 8**). This would eliminate the mainline weave segment by forcing all traffic destined to E. 72^{nd} Street and to MLK Drive to exit at the E. 72^{nd} Street interchange. Traffic destined to MLK Drive would continue through the at-grade intersection on E. 72^{nd} Street onto the C-D roadway to access MLK Drive.

FIGURE 8: C-D ROAD BETWEEN E.72ND AND MLK

This alternative is not further evaluated in this study due to higher costs and impacts to Gordon Park. This alternative may be considered if other alternatives are determined not to be feasible. Preliminary engineering is needed to develop an alignment and profile to estimate the construction costs of reconfiguring the EB ramps at E. 72nd Street, construction of a CD roadway parallel to I-90, reconstruction of the pedestrian bridge over I-90, and potential impacts to Gordon Park property.

MLK DRIVE CORRIDOR

The MLK Drive corridor experiences congestion during the AM and PM peak periods. Appendix E contains the detailed analyses and summary for the No Build condition. Locations with LOS E or LOS F are considered capacity deficient for the purposes of this evaluation. Note that the design period for MLK Drive corridor is the AM peak. All level of service results are for the AM peak hour, unless stated otherwise.

- MLK Drive at I-90 WB ramp intersection: LOS F on northbound and southbound approaches. Although the WB ramp approach shows acceptable level of service (LOS B), the high volumes result in a queue length of 1,539 feet. The length of the queue can extend onto mainline I-90 due in part to the capacity constraints of the single lane approach at MLK Drive.
- > <u>MLK Drive at N. Marginal Road intersection</u>: LOS E on the eastbound approach of N. Marginal Road.
- > <u>MLK Drive at I-90 EB ramp intersection</u>: LOS F on eastbound approach of the EB exit ramp.

The primary capacity constraint on the MLK Drive corridor is the southbound merge at the railroad bridge. Queues that form on both exit ramps are attributed in part to the capacity of the single southbound lane on MLK Drive south of the I-90 interchange. Two countermeasures are proposed to mitigate existing capacity constraints of MLK Drive. The metrics used to evaluate the various improvement alternatives are a combination of intersection LOS and 95th percentile queue lengths derived by SimTraffic software.

> Alternative 1: Provide two southbound lanes on MLK Drive south of the interchange and widen WB exit ramp to two lanes

The first Build alternative includes continuation of two southbound lanes on MLK Drive south of the railroad overpass. Presently, the southbound lanes of MLK Drive merge to a single lane just north of the railroad overpass, resulting in a capacity constraint. Additionally, a second lane on the WB exit ramp is included in this alternative such that two lanes from the ramp can feed into two receiving lanes on MLK Drive and extend south of the RR overpass.

The northbound left turn movement at the Broad Street intersection is to be prohibited during peak hours (7-9 AM and 3-7PM).

> Alternative 2: Alternative 1 plus traffic signal at the EB ramp intersection

The second Build alternative includes improvements from Alternative 1 plus a traffic signal at the EB ramp intersection. This alternative was evaluated separately to discern the additional benefits of assigning right of way at the EB ramp intersection with a traffic signal. The addition of a traffic signal at the EB ramp intersection is expected to improve operations from LOS F to LOS B. Analyses included additional volumes resulting from modifications to the E. 72^{nd} Street interchange.

The 95th percentile queue lengths for No Build (black), Alternative 1 (red), and Alternative 2 (blue) are graphically shown in **Figure 9.** Results show queues on the WB exit ramp are reduced-- 1,535 feet in the No Build condition to less than 100 feet with Alternative 1. Alternative 2 reduces queues on the EB exit ramp while still maintaining short queue lengths on southbound MLK Drive. The addition of a protected/permissive left turn phase may be considered in the AM peak period to minimize queue lengths of the SB left turn movement.

An interim improvement of only signalizing the EB I-90 ramp intersection without increasing southbound capacity on MLK Drive will increase delays to traffic exiting I-90 WB. In addition to the re-allocation of approach delays, the capacity of the traffic signal is expected to be adversely affected by the queues extending from the railroad bridge unless the second lane is extended on MLK Drive.

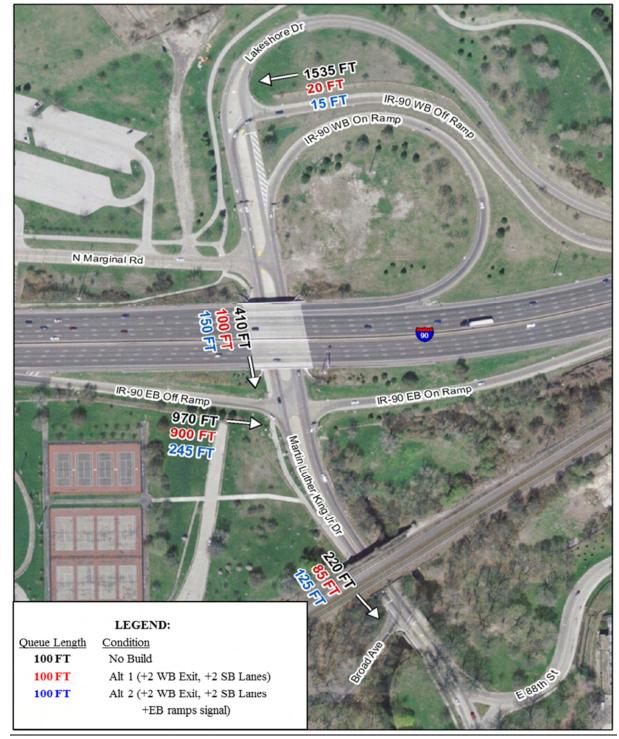


FIGURE 9: QUEUE LENGTH COMPARISON, AM PEAK HOUR

> Alternative 3: Signalize WB exit ramp

The WB I-90 exit ramp on MLK Drive also was evaluated with traffic signal control. The intersection configuration matches the existing condition, with the WB exit ramp forming the east leg of the signalized intersection. The N. Marginal Road approach is to be equipped with

vehicle detection to force the traffic signal at the WB I-90 exit ramp to cycle and create gaps in the traffic flow during peak periods. With traffic signal control and lane geometry described below and shown in **Figure 10**, the intersection is expected to operate at LOS C or better during the AM and PM peak hours.

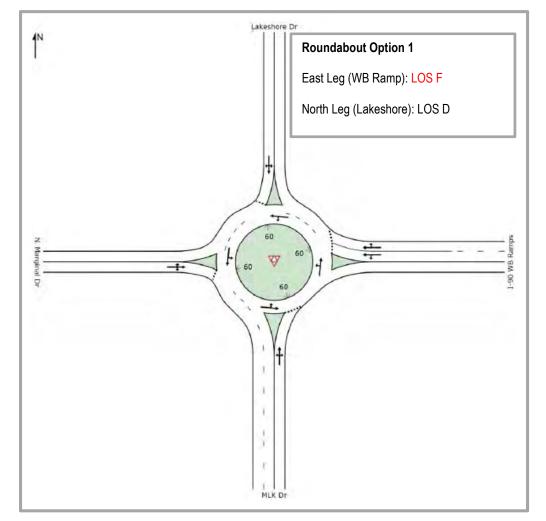
- 2 WB approach lanes on the WB exit ramp (L, LR)
- 1 EB approach lanes on N. Marginal (LR)
- 1 NB approach lane on MLK Drive (T)
- 1 SB approach lane on Lakeshore Blvd (T)

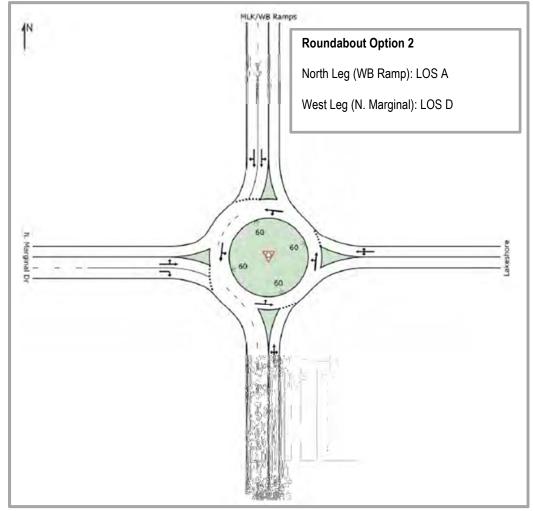
While levels of service are expected to be good, the queue length on the WB ramp approach is expected to extend 1,475 feet -- a marginal improvement over the existing condition (1,535 feet). Signalization of the WB I-90 exit ramp is not recommended.

Various alternatives were evaluated to assess converting the WB I-90 exit ramp intersection and the N. Marginal Road intersection on MLK Drive into a roundabout configuration. Three configurations for a roundabout intersection were evaluated. Roundabout capacity was evaluated using SIDRA analysis software to forecast levels of service based on various lane conditions. The roundabout alternatives are shown in **Figures 11A through 11C** with level of service/queue summary included in **Table 6.**

> Roundabout Option 1: This option retains the basic configuration of the existing intersection with the WB exit ramp as the east leg, Lakeshore Blvd as the north leg, N. Marginal Road as the west leg, and MLK Drive as the south leg. It is concluded that keeping the WB exit ramp as the east leg of the roundabout will operate at poor level of service due to the high left turn demand from the ramp to southbound MLK Drive. As the east leg, the ramp volume would need to yield to NB traffic destined to Lakeshore Drive or N. Marginal Road resulting in LOS F for the ramp.

The SIDRA software estimates the queue on the east leg to be 2,437 feet. The available length of the existing exit ramp configuration between the roundabout and the deceleration lane of the exit ramp is estimated to be 1,600 feet. This option is not considered to be feasible with a roundabout at the ramp intersection at MLK Drive. Signalization would be required to avoid queues from extending past the ramp gore.

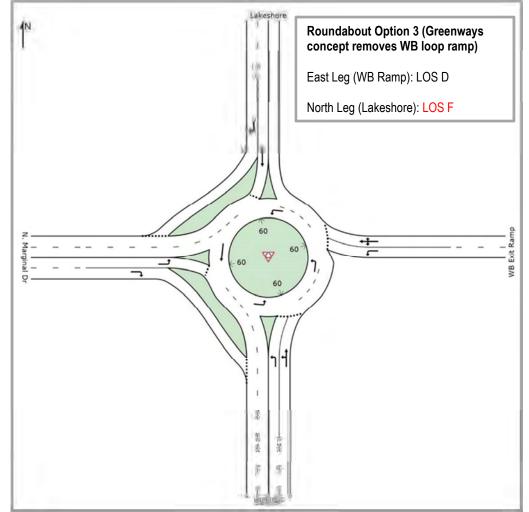



FIGURE 11A: ROUNDABOUT OPTION 1, AM PEAK

Roundabout Option 2: This option features realignment of Lakeshore Boulevard to form the east leg of the roundabout and the WB exit and entrance ramps to form the north leg of the roundabout. Lakeshore Boulevard would be designed to cross over the existing WB loop ramps or the ramp profiles raised to cross over realigned Lakeshore Boulevard. The benefit of Option 2 is that it provides acceptable levels of service for all approaches.

The feasibility of the profile changes to the ramps or to Lakeshore Blvd will need to be evaluated in greater detail. Topography of the park property supports a realignment of Lakeshore Boulevard with future plans to revise the park entrance. Sufficient field survey data is needed to confirm profile grades meet L&D criteria and determine the need and/or size of retaining walls.

Roundabout Option 3: This option reflects the Greenways concept that includes removal of the loop ramp from MLK Drive to I-90 WB. Traffic is routed across N. Marginal Road to access the existing WB I-90 entrance ramp at the E. 72nd Street interchange. The analysis shows that a single westbound lane is sufficient to accommodate demand traffic. Congestion can be expected on the N. Marginal Road when seasonal traffic is a part of the traffic mix (recreational vehicles, boat trailers, etc).


The SIDRA software estimates the queue on the east leg to be 580 feet. The available length of the proposed exit ramp between the roundabout and the ramp is estimated to be 800 feet. This option is considered to be feasible with a roundabout at the ramp intersection at MLK Drive.

The changes are expected to increase traffic on N. Marginal Road by nearly 800 vehicles during the PM peak hour. Traffic diversion to N. Marginal Road will likely necessitate improvements to N. Marginal Road, the intersection of E. 72^{nd} Street and N. Marginal Road, and the WB entrance ramp to I-90 from E. 72^{nd} Street. Removal of the loop ramp combined with the ramp removals recommended as short term countermeasures will redirect traffic to N. Marginal Road as summarized in **Table 5**.

From	То	То	Countermeasure Implementation	AM Peak Volume	PM Peak Volume
I-90 WB exit to E. 72 nd	I-90 WB exit to MLK	N. Marginal	Short Term	130 vph	120 vph
I-90 EB entrance from E. 72 nd	N. Marginal	I-90 EB entrance from MLK	Short Term	60 vph	160 vph
I-90 WB entrance from MLK	N. Marginal	I-90 WB entrance from E. 72 nd	Medium Term	350 vph	500 vph
Traffic Added to N. Marginal Road			540 vph	780 vph	

TABLE 5: EXPECTED TRAFFIC DIVERSION TO N. MARGINAL ROAD

FIGURE 11C: ROUNDABOUT OPTION 3, AM PEAK

Performance Measure	North leg	South leg	West leg	East leg	Intersection
	Alternative 1				
LOS/Delay (secs)	D/37.9	A / 5.0	C/30.2	F/89.2	E/ 63.0
Queue	125'	130'	100'	2440'	
Alternative 2					
LOS/Delay (secs)	A / 6.5	A / 6.6	D/38.7	B/11.7	A/8.4
Queue	170'	125'	75'	25'	
Alternative 3					
LOS/Delay (secs)	F/82.3	A / 8.3	C / 26.9	D/36.7	C/31.5
Queue	100'	40'	75'	580'	

TABLE 6: SIDRA CAPACITY ANALYSIS – MLK/N.MARGINAL/LAKESHORE/WB RAMPS INTERSECTION, AM PEAK

E. 55TH STREET CORRIDOR

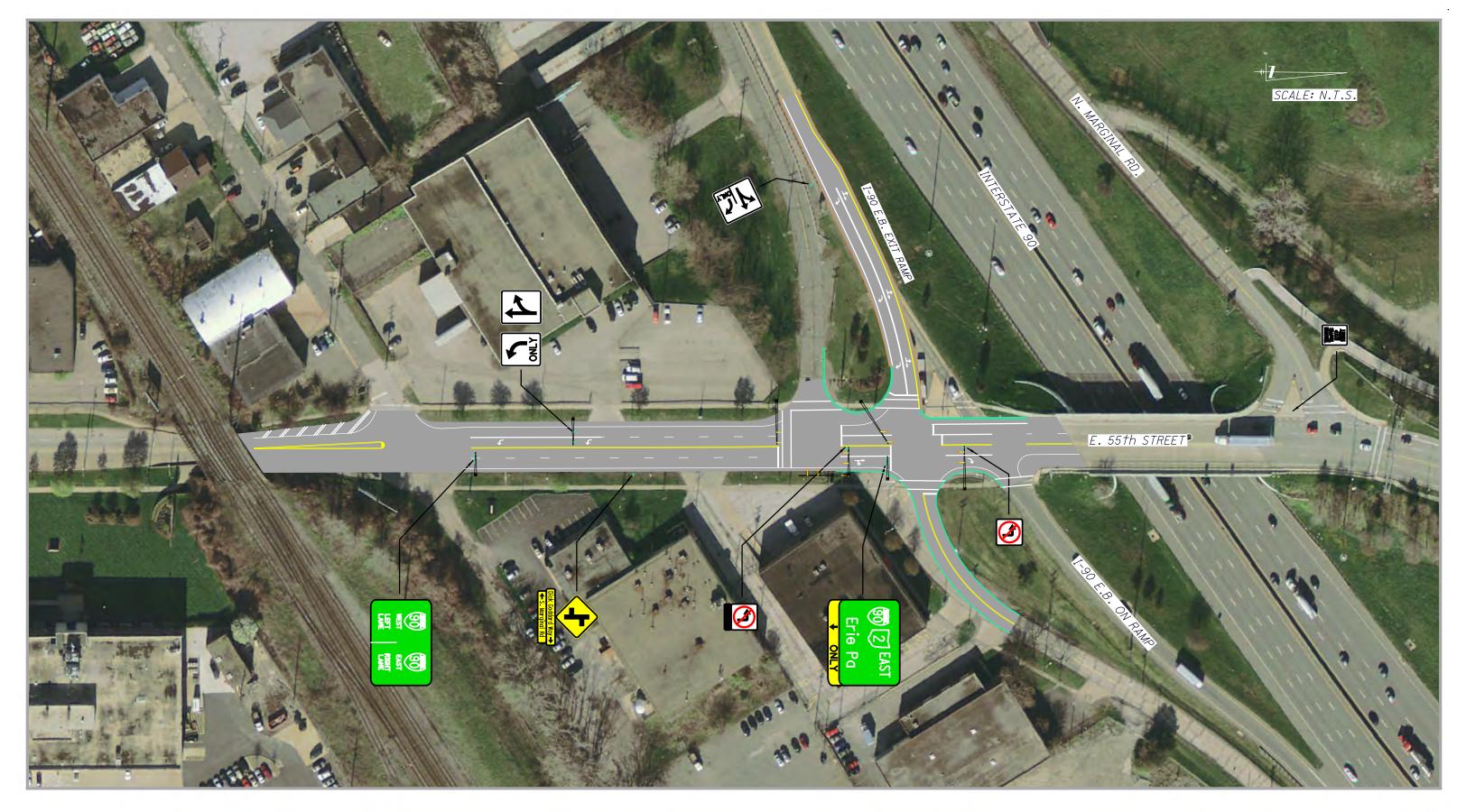
The following countermeasures were evaluated to quantify the benefits of revising the merge configuration on E. 55th Street and consolidating the two signalized intersections to one signalized intersection. Features of the Build alternative include the following countermeasures, also shown in **Figure 12**. The level of service summary based on Synchro analysis is shown in **Table 7**.

> Revise lane configuration of the SB merge at the railroad bridge

- Revise the pavement markings on E. 55th Street at the railroad bridge to drop the inside, southbound through lane as an exclusive left turn lane at a private driveway opposite Lake Court. This lane configuration converts the existing curb lane into a through lane that continues south to St. Clair Avenue. The changes to pavement markings will reduce the number of southbound conflicts between through vehicles and left turning vehicles at the signalized intersections (EB I-90 ramp and S. Marginal Road/Dick Goddard Way.
- The inside lane on E. 55th Street in the southbound direction will operate as a defacto left turn lane during peak periods. Through vehicles are permitted, especially those that may be destined to other closely spaced intersections within the study area. Weaving of through vehicles destined to St. Clair Avenue is minimized.
- Add overhead lane-use signs to enable motorists advance notice of the drop lane condition at the Lake Court/private driveway intersection.

> Revised signalized intersection on E. 55th Street formed by the EB exit ramp and Dick Goddard Way

- Realign the EB I-90 exit ramp opposite Dick Goddard Way to form a primary, signalized intersection on E. 55th Street. The overall size of the combined intersections is reduced to improve operational efficiency and intersection alignment.
- Operate the S. Marginal Road intersection as an exclusive phase that can be skipped when vehicles are not present. Improved levels of service can be achieved with a 4-phase sequence in the AM peak period and a 3-phase sequence in the PM peak period. During PM peak, the SB protected left turn phase can be eliminated due to lower SB left turn demand onto Dick Goddard Way.


- Convert the NB curb lane to be exclusive right turn lane to the EB I-90 entrance ramp. Improved pedestrian facilities can be implemented on the bridge structure over I-90, consistent with the Greenway study.
- The EB I-90 entrance ramp operates as an unsignalized intersection

	EB	WB	NB	SB	
	APPROACH	APPROACH	APPROACH	APPROACH	
E. 55th Street at I-90 EB Ramps					
2034 AM No Build	F / 118.0	-	A/0.0	D/42.3	
2034 PM No Build	D / 52.4	-	A/2.0	C / 31.5	
E. 55th Street at S. I	E. 55th Street at S. Marginal Road/Dick Goddard Way				
2034 AM No Build	C / 32.7	F / 160.6	E/75.8	A/2.2	
2034 PM No Build	D/37.0	D/39.2	D/41.9	A/0.5	
E. 55th Street at I-90 EB Exit Ramp/Dick Goddard Way (signalized)					
2034 AM Build	C / 25.5	C / 32.9	A/2.5	C / 33.6	
2034 PM Build	C / 28.9	C / 28.0	A/2.0	C / 29.1	
E. 55th Street at S. Marginal Road (signalized)					
2034 AM Build	C / 33.1	-	C / 33.2	A/1.5	
2034 PM Build	C / 30.2	-	C / 29.0	A/1.3	

TABLE 7: CAPACITY ANALYSIS – 55TH STREET CORRIDOR

Numerical values represent delay in seconds per vehicle

> ODOT - DISTRICT 12
FIGURE 13 - E. 55th STREET CONCEPT PLAN

Innovative Facility and Infrastructure Design™

RECOMMENDATIONS

Countermeasures to mitigate crashes on I-90 will require improvements to interchanges and local roadways. The following have been identified as the contributing factors to safety performance on Interstate 90.

- > Closely spaced interchanges
- > Short weave segments between E. 72nd Street and MLK Drive

The following have been identified as the contributing factors to safety performance on MLK Drive.

- > Single lane WB exit ramp from I-90 contributes to queue formation on the exit ramp and spillback onto I-90 during peak morning hours.
- > Downstream capacity constraint where the two southbound lanes merge to a single lane at the RR overpass results in queue spillback on the WB and EB exit ramps.
- Stop sign control for the EB ramp terminal intersection causes queues to form on the exit ramp that extend to mainline I-90. These queues aggravate the poor weaving conditions that exist on I-90 EB between E.72nd Street and MLK by reducing weave length further. Also, these queues leave no room to decelerate from I-90 EB travel lanes.

The focus of improvements to the I-90 corridor requires modifications to the MLK Drive interchange and to the E. 72nd Street interchange. The modifications recommended below are not conducive to multiple construction phases due, in part, to the existing capacity constraints and safety performance of the MLK Drive corridor. Most safety countermeasures route additional traffic to the MLK Drive interchange, thus capacity and geometric improvements are required on the local street network.

The proposed countermeasures are expected to mitigate 29 crashes on the I-90 corridor (12 westbound crashes and 17 eastbound crashes). The proposed countermeasures are expected to mitigate an additional 51 crashes on the MLK Drive corridor. The proposed countermeasures are described below and are shown in **Figure 13**.

- 1. **Revise MLK Drive to imbalanced 3-lane section**. Revise the lane configuration of MLK Drive from the WB exit ramp to the St. Clair Avenue bridge. Revise southbound MLK Drive to have 2 southbound lanes extending south under the railroad bridge until merging back to a single lane prior to the St. Clair Avenue bridge. Continuation of the two southbound through lanes on MLK Drive past the RR overpass is recommended to eliminate capacity constraints downstream of the interchange. An additional southbound lane can be provided within the existing pavement (edge lines) without widening. The available vertical clearance under the existing railroad bridge is 16.5 feet or higher for existing travel lanes and meets the design criteria for the proposed widening. Other features of this countermeasure include the following:
 - > Widen the WB I-90 exit ramp to provide an additional left turn lane to MLK Drive. An additional lane on the WB exit ramp to MLK Drive is recommended to minimize queue spillback onto mainline I-90. Dual lanes from the ramp will be received by the dual southbound through lanes on MLK Drive.
 - Provide dedicated left turn lanes on MLK Drive. The cross section of MLK Drive under I-90 is to be reconstructed as a 5-lane section without a raised median. A 10 ft bike path on the west side of MLK Drive is accommodated under I-90 with a 5 ft tree lawn. Left turn lanes are recommended on MLK Drive for the NB left turn movement at the N. Marginal Road intersection and for the SB left turn movement at the EB I-90 ramp intersection. These lanes

can be accommodated by removal of the center median island on MLK Drive under the I-90 overpass. This improvement will remove left turning vehicles from the through lane.

- Signalize the EB I-90 ramp intersection. An 8-hour traffic signal warrant is met at the EB ramp intersection with current traffic demand. Appendix D includes details of the signal warrant analysis. Gaps in the southbound traffic flow are inadequate to service the high right turn volumes from the EB exit ramp to MLK Drive, which results in queue spillback onto mainline I-90. Signalization of the EB ramp is only feasible with the addition of a second SB lane on MLK Drive for 2 reasons: 1) queues extend from the merge at the railroad overpass through the EB ramp intersection making signalization ineffective during the peak periods, and 2) signalization would cause longer queues to extend onto I-90 WB mainline during the AM peak hour without additional capacity on MLK Drive.
- Restricted movement at Broad Street intersection. Prohibit the northbound left turn movement at the Broad Street intersection between 7-9 AM and 3-7 PM. The traffic signal is to remain for pedestrian crossings and egress from Broad Street.

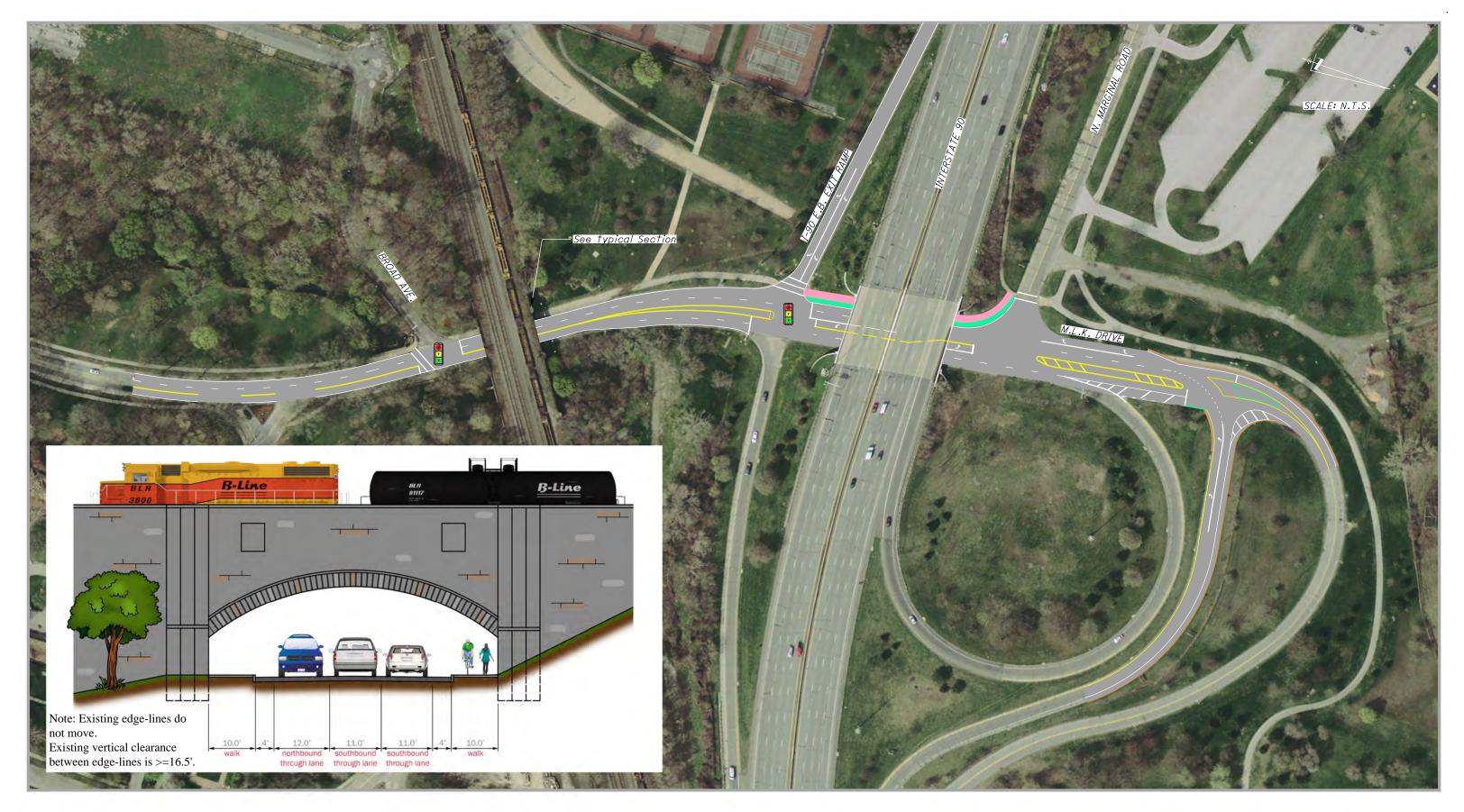
Left turns to E. 88th Street and to East Road are to occur from a shared left-through lane.

- > **Pavement resurfacing.** Mill/fill of pavement surface proposed to a point 500 feet south of the railroad bridge. The remaining distance (1,400 feet) is to install the revised pavement markings by removing the existing pavement markings and restriping the corridor as a 3-lane section.
- > **Speed Zone study:** Conduct a speed zone study on MLK Drive to determine the appropriate speed limit for the corridor.
- 2. Eliminate substandard weave on I-90 between E. 72nd Street and MLK Drive interchanges. Removal of the EB entrance ramp and WB exit ramp at the E. 72nd Street interchange is recommended to eliminate the substandard weave on I-90 and its associated crash pattern. The entrance ramp tapers of the WB I-90 entrance ramp from MLK Drive and the deceleration length of the I-90 EB exit ramp to MLK Drive are to be increased to meet current L&D standards. Removal of the EB entrance ramp would require the realignment of S.R. 283, to follow N. Marginal Road and back onto I-90 via I-90 EB entrance ramp from MLK Drive.

Along with the above listed short term improvements, in order to emphasize the existing shared use/recreational paths and on-street bicycle facilities in the area, it is recommended that signs as well as pavement markings denoting pedestrian/bicycle crossings be upgraded within the study area.

A long term plan converts the WB I-90 exit ramp/N. Marginal Road/Lakeshore Drive intersection to a modern roundabout. A roundabout intersection is recommended to replace the two unsignalized intersections on MLK Drive (north of I-90). Other features of this countermeasure include the following:

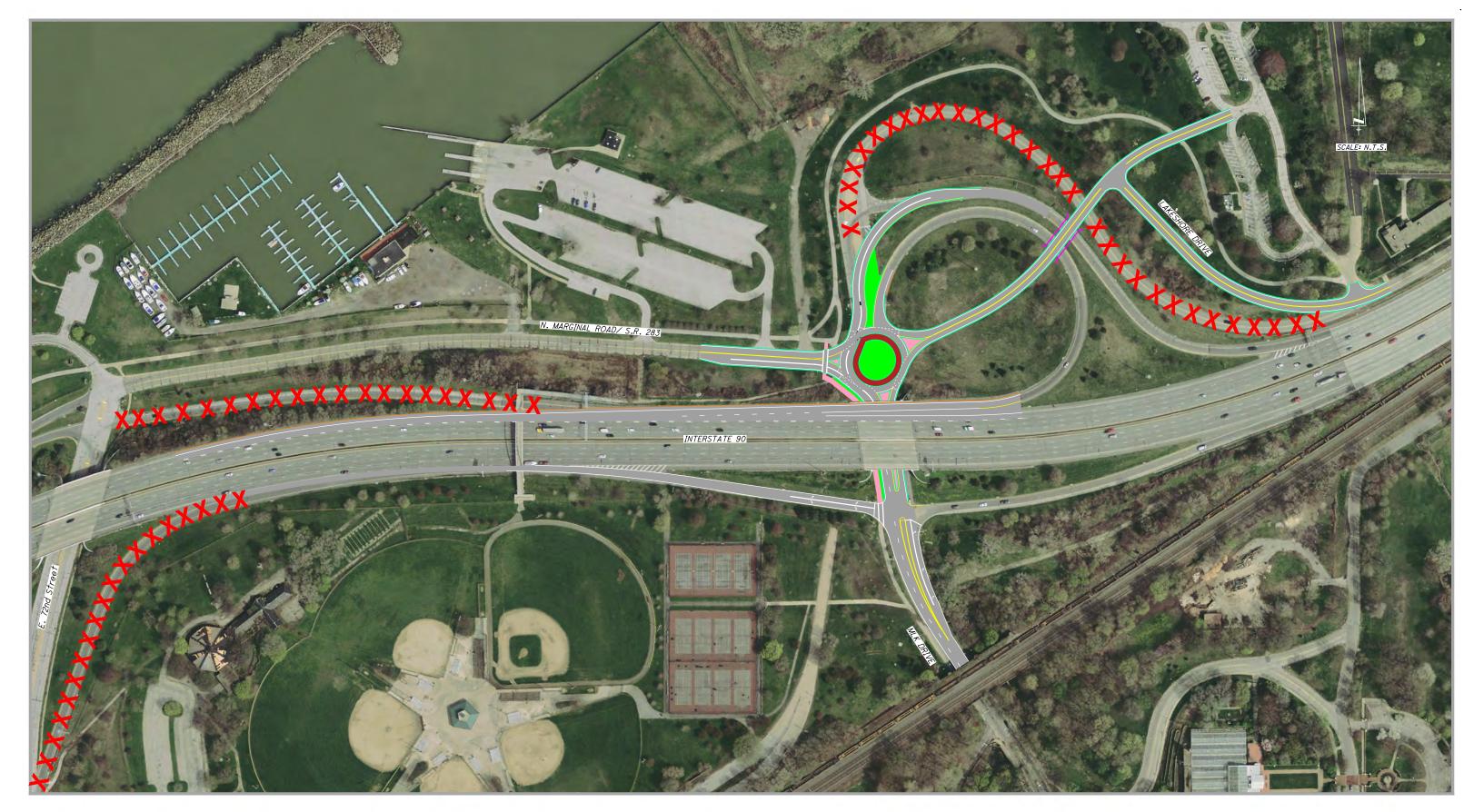
- > A roundabout intersection at this location would retain the loop ramp from MLK Drive to WB I-90. The existing loop ramp reduces the frequency of ped/vehicle conflicts with the bike path on the west side of MLK Drive and avoids the need for widening of N. Marginal Road.
- > The roundabout should incorporate the WB I-90 exit and entrance ramps as the north leg (through movement) to achieve acceptable levels of service.
- > Realignment of Lakeshore Boulevard is proposed to form the east leg of the roundabout intersection and N. Marginal Road will form the west leg. Lakeshore Drive crosses over the WB I-90 ramps with a culvert structure to minimize the roadway elevation over the WB I-90 ramps and to match the aesthetic treatments of MLK Drive south of I-90. The proposed


alignment also is compatible with future plans to revise access to the Lakefront State Park. Right of way negotiations with the park should include the swap of property that is currently occupied by Lakeshore Boulevard.

A hybrid design, featuring two entry lanes for the WB exit ramp and N. Marginal Road approach and a single lane for the MLK Drive and Lakeshore Boulevard approaches, is expected to provide sufficient capacity through the roundabout. See **Figure 14**.

The countermeasures summarized in **Figure 12** for the E. 55th Street corridor are expected to mitigate 31 crashes. The pavement marking and signing changes proposed south of I-90 could be implemented prior to intersection reconstruction of the EB I-90 exit ramp/Dick Goddard Way intersection if phased construction improves the feasibility of project implementation. Note also that the conversion of the S. Marginal Road intersection to right in/right out operation should be considered as a long term countermeasure if safety performance continues to be an issue in the future.

Also, emphasizing the existing shared use/recreational paths and on-street bicycle facilities in the area, regulatory and directional signage for bicyclists and pedestrians as well as pavement markings denoting crossings should be part of the safety improvements.



> ODOT - DISTRICT 12 FIGURE 14 - MLK DRIVE SHORT TERM CONCEPT PLAN

Innovative Facility and Infrastructure Design™

> ODOT - DISTRICT 12
FIGURE 15 MLK DRIVE LONG TERM PLAN

Innovative Facility and Infrastructure Design

D BENEFIT COST ANALYSIS

Benefit cost analysis is a tool to determine the financial benefits of a project by comparing the net present value (NPV) of a project to NPV of the safety benefit provided by that project. Benefit cost values greater than one indicate a positive return on the original investment. Preferred countermeasures are those having the highest NPV of safety benefits.

COST ESTIMATES

Project costs were estimated separately for improvements on E. 55th Street, MLK Drive and the I-90 interchange ramps. Detailed construction cost estimates are included in **Appendix H** and assume the following:

- > 35 percent design risk
- > 8.6 percent inflation rate for an estimated 2018 construction year.
- > Right of way impact is expected with construction of a roundabout intersection on MLK Drive at N. Marginal Road/WB ramp intersection.

TABLE 8: COST ESTIMATE SUMMARY

Location	Improvements	Construction Subtotal	Design contingency & Inflation	Total Estimated Cost
E. 55 th Street Countermeasures	Realign EB exit ramp, install new traffic signal, pavement overlay and markings	\$1,036,000	\$573,000	\$1,609,000
I-90 / MLK Drive Short Term Countermeasures	MLK Drive improvements plus ramp removals at E. 72 nd Street interchange	\$1,154,000	\$540,000	\$1,694,000
I-90 / MLK Drive Long Term Countermeasures	Roundabout intersection and realignment of Lakeshore Drive	\$3,392,000	\$1,582,000	\$4,974,000

BENEFIT COST ANALYSIS

A benefit cost analysis was prepared using the ODOT ECAT analysis tool for improvements on E. 55th Street and on I-90/MLK Drive (short term countermeasures only). The benefit cost of the ramp improvements at E.72nd interchange are attributed to improved intersection operations at the MLK Drive interchange. Cost estimates and benefit cost analysis reports from the ECAT tool are included in **Appendix H.**

E. 55th Street

The following crash modification factors were applied for improvements recommended on E. 55th Street. **Table 9** summarizes the benefit cost analysis results for the E.55th street improvements.

Provide a left turn lane on one major road approach: A CMF of 0.61 was applied to all crashes. This CMF was obtained from the FHWA Crash Clearinghouse and has a 3 star quality rating. While exclusive left turn lanes are not being constructed on E. 55th Street, the change of pavement markings that encourage through traffic to use the curb lane will result in the operation of the inside lane (southbound) as a defacto left turn lane during peak periods.

- > Improve visibility of signal heads (approach realignment/compact intersection): A CMF of 0.93 was applied to all crashes; This CMF was obtained from the FHWA Crash Clearinghouse and has a 4 star quality rating.
- Road Diet convert 4-lane to 2-lane plus turn lanes: The road diet CMF of 0.71 was applied to all crashes. This CMF was obtained from the FHWA Crash Clearinghouse and has a 5 star quality rating.

TADLE 3. DENELTI COOT ANALISIS. 33	STREET COUNTERMEASURES
Countermeasures with CMF values used in ECAT Tool	 Provide defacto left turn lanes Improve signal visibility Road diet
Expected annual crash adjustment	-8.6
Net present value of project	\$1,502,200
Net present value of safety benefit	\$3,709,900
Benefit / Cost Ratio	2.47

TABLE 9: BENEFIT COST ANALYSIS: 55[™] STREET COUNTERMEASURES

MLK Drive

The following crash modification factors were applied for both short and medium term countermeasures on MLK Drive. While the ECAT tool does not specifically calculate the safety benefit of interstate facilities, a total of 29 of the 292 crashes on I-90 were assigned to the MLK Drive improvements which is considered to be a conservative estimate since queues extend to mainline I-90 from the WB exit ramp. **Table 10** summarizes the benefit cost analysis results for MLK Drive.

- > **Install traffic signal**: A CMF of 0.83 was applied to all crashes. This CMF was obtained from the FHWA Crash Clearinghouse and has a 3 star quality rating.
- > **Provide a left turn lane on one major road approach**: A CMF of 0.61 was applied to all crashes. This CMF was obtained from the FHWA Crash Clearinghouse and has a 3 star quality rating.
- > Add through lane: A CMF of 0.675 (factored) was applied to all crashes. This CMF was obtained from a University of Central Florida/Florida DOT research report titled 'Validation and Application of HSM (Part D) in Florida' published in May 2014. Excerpts of the proposed CMFs are included in Appendix H.

Countermeasures with CMF values used in ECAT Tool	 Provide left turn lanes Install traffic signal Add through lane 	
Expected annual crash adjustment	-10.15	
Net present value of project	\$1,673,300	
Net present value of safety benefit	\$3,632,700	
Benefit / Cost Ratio	2.17	

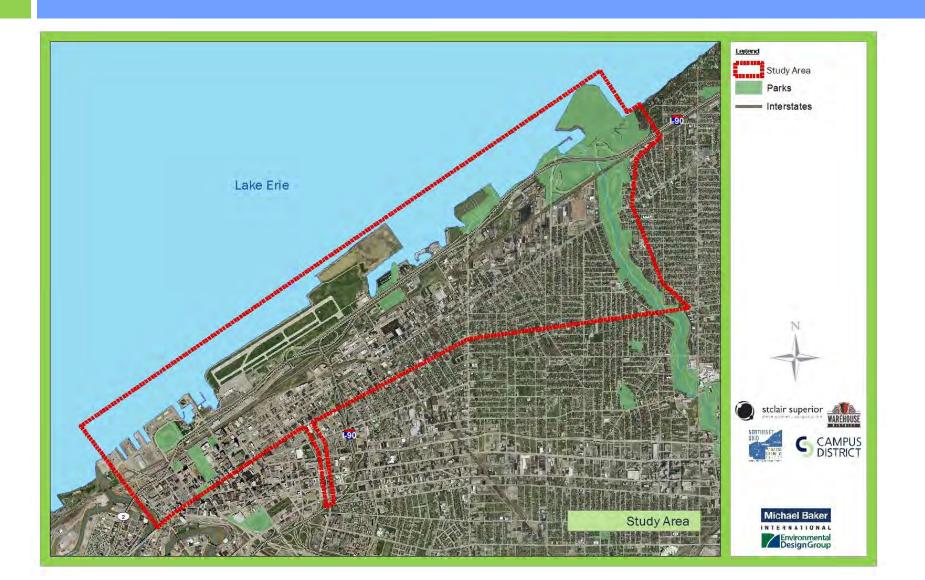
TABLE 10: BENEFIT COST ANALYSIS: MLK DRIVE SHORT TERM COUNTERMEASURES

LAKEFRONT GREENWAY and DOWNTOWN CONNECTOR STUDY

Public Meeting

March 5, 2015

- Study area
- Project goals and objectives
- Plan development process & project team
- Existing conditions & challenges
- Design concepts and opportunities
- Public input

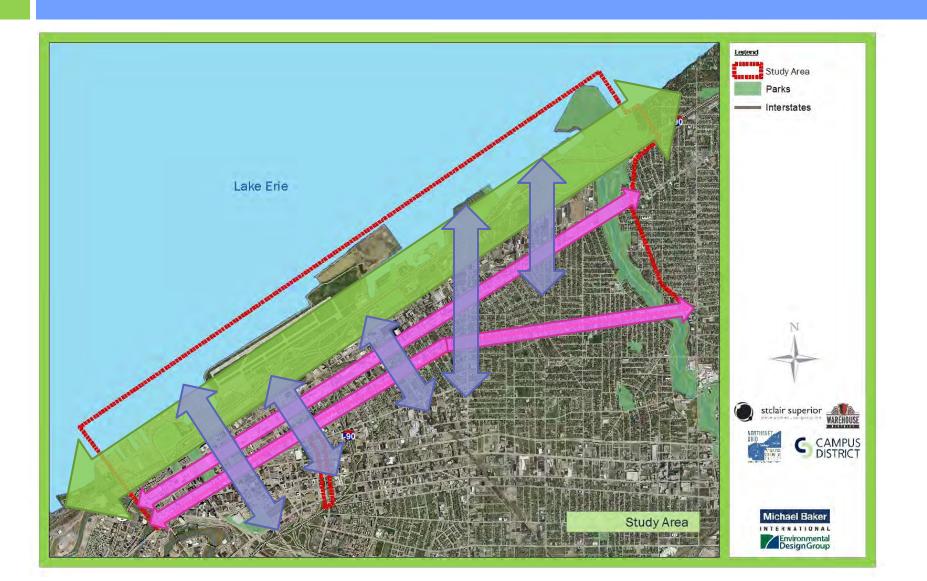


Study Area

Goals and Objectives

Goals:

- Improve North and South Marginal Roads for travel by bicyclists and pedestrians
- Strengthen connection between lakefront, downtown, and near eastside neighborhoods
- Objectives:
 - Establish a lakefront greenway Marginal Road corridor
 - Create north-south connections to the Lakefront Greenway
 - Facilitate east-west connectivity



Lakefront Greenway Concept Development Public Meeting, March 5, 2015

Study Area - Priority Connections

Plan Development Process

- Project Scope, Goals & Objectives
- Existing Conditions Assessment
- Concept Development
- Concept Evaluation and Feasibility Assessment
- Recommendations
- Steering Committee Meeting 4
- Report

Community Engagement

Concept Development

- Steering Committee Meeting 1
- Project Team Workshop
- Steering Committee Meeting 2
- Public Meeting #1 (March 2015)

Concept Evaluation & Assessment

Steering Committee Meeting 3

Recommendations

Public Meeting #2 (May 2015)

Project Team

Project Sponsors James Amendola – St. Clair Superior CDC Michael Fleming – St. Clair Superior CDC Bobbi Reichtell – Campus District Tom Starinsky – Historic Warehouse District & Gateway District

Consultant Team

Nancy Lyon-Stadler – Michael Baker Intl. Michelle Johnson – Environmental Design Group Jeff Kerr – Environmental Design Group Travis Mathews – Environmental Design Group Jim Shea – Michael Baker Intl. Kim Guice – Michael Baker Intl.

Steering Committee

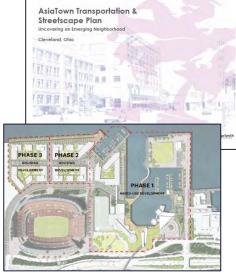
Radhika Reddy – Ariel Ventures Ren Camacho – Cleveland Airport Systems Arthur Schmidt – Cleveland City Planning Sharonda Watley – Cleveland City Planning Michelle Harvanek – Cleveland City Sustainability Linda Sternheimer – Cleveland Cuyahoga County Port Authority Ed Rybka – Cleveland Lakefront Development Kelly Coffman – Cleveland Metroparks Sara Burns Maier – Cleveland Metroparks Amy Snell – GCRTA Ryan Noles – NOACA Melissa Thompson – NOACA Mark Coffin – property owner John Motl – ODOT District 12 Planning Brian Blayney – ODOT Dist. 12, Traffic Engineering Scott Knebel - LJB April Bleakney – Resident, Campus District Rachel DuFresne – Resident, Campus District Maureen Haden – Resident, St. Clair Superior Jim Kastelic – Trust for Public Lands Larry Orlowski – Lakeside Yacht Club Barb Clint – YMCA & Bike Cleveland

Lakefront Greenway Concept Development Public Meeting, March 5, 2015

Other Plans & Projects

Build upon on-going efforts

- City plans
- TLCI plans
- Private developer initiatives
- Bikeway plans
- Cleveland Metroparks Lakefront Plan



Lakefront Greenway Concept Development Public Meeting, March 5, 2015

Cleveland Metroparks Waterfront Plan

Cleveland Metroparks Waterfront Plan

Existing Conditions: North Marginal



Lakefront Greenway Concept Development Public Meeting, March 5, 2015

Existing Conditions: South Marginal

Lakefront Greenway Concept Development Public Meeting, March 5, 2015

Challenges

- Poor pavement condition on both Marginal Roads
- Limited connections across SR-2 / I-90

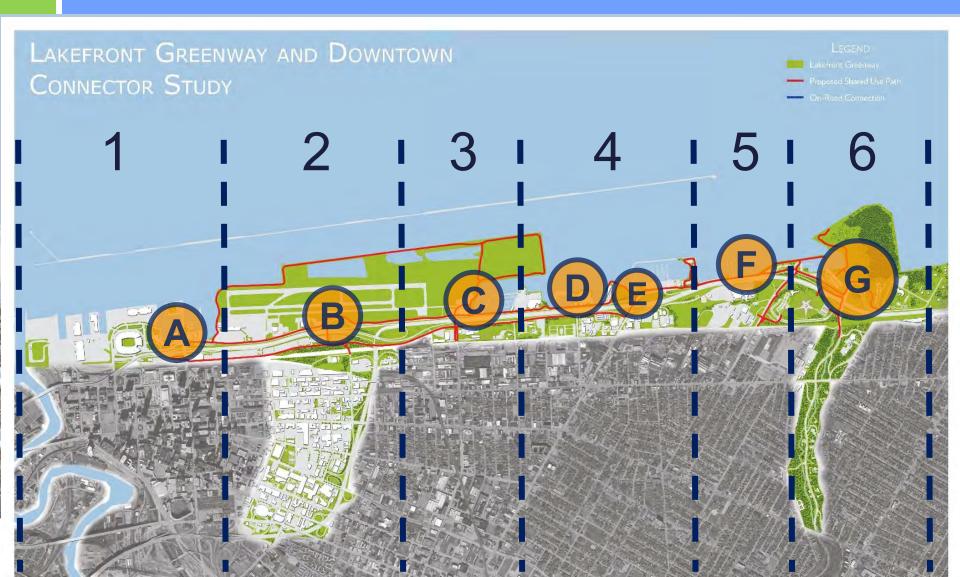
North Marginal Road

- Substandard shared use path
 - Narrow
 - Obstacles
 - Pinch Points
- Unattractive infrastructure
 - Chain link fence
 - Highway scale lighting
 - Lack of landscaping
 - No buffer between North Marginal Road and Shoreway

South Marginal Road

- Isolated
- Lacks bicycle and pedestrian infrastructure
- Does not traverse entire study area

Lakefront Greenway Concept Development Public Meeting, March 5, 2015


Environmental

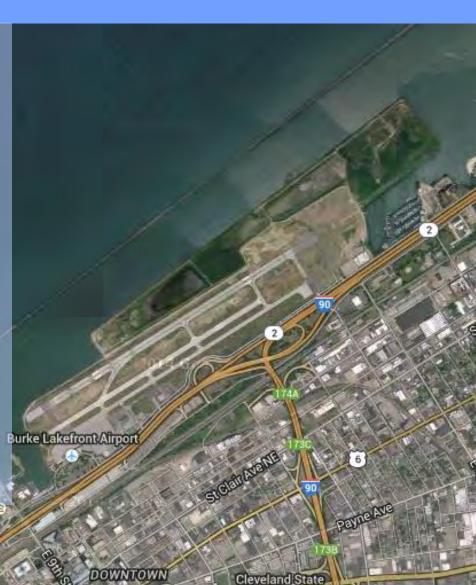
DesianGroup

Existing Trails & View Points

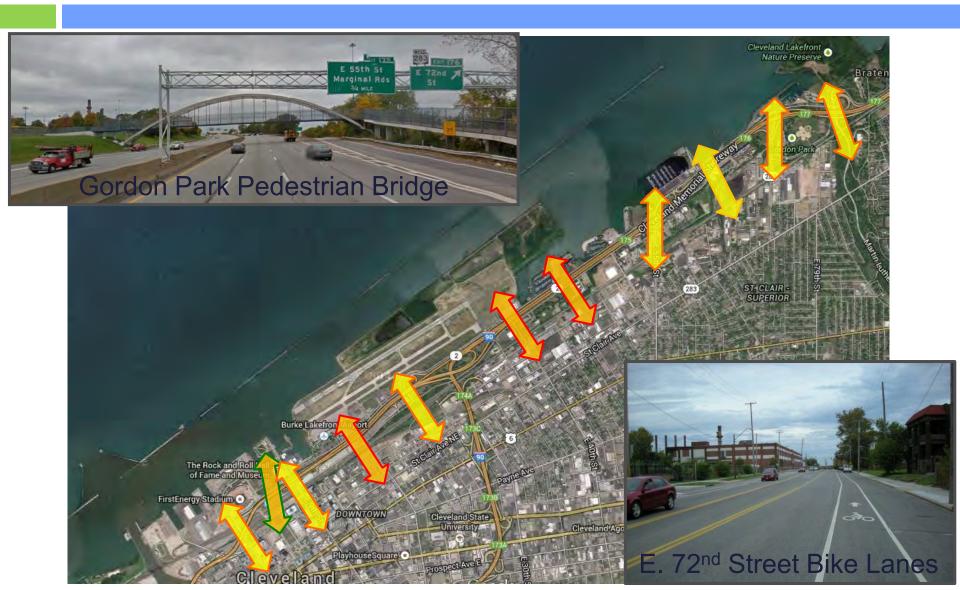
Trail Segments & Nodes

Site Plan Nodes

Lakefront Greenway Concept Development Public Meeting, March 5, 2015


Constraints

Burke


- Ongoing operations
- FAA regulations
- 20 year horizon (minimum)
- CDF: Port managing active site for sediment processing
 - Ongoing generation of urban soils
 - Intense industrial use
 - Different than USACE management
 - 50 year horizon
- Influences implementation of concepts/opportunities

The Rock and Roll Hall of Fame and Museum

FirstEnergy Stadium

North-South Connections Existing, Planned & Potential

W.3rd Street

Existing

- Potential to reconfigure roadway
- City is studying feasibility

03.5


North Coast Harbor Ped Bridge

Planned Burke Lakefron Bicentennial Park p William G. Mather The Rock and Roll Hall of Fame and Museum amer Great Lakes cience Center FirstEnergy Stadium 💿 Villard Pa Alfreditcinen

Cleveland Public Auditorium

- Will connect Mall C with North Coast Harbor
- Construct for RNC in 2016

Pedestrian Bridge Project Area

E.9th Street

- **Capacity reduction on E.9th not feasible**
- Can't widen existing bridge
- Potential for adjacent matching structure

Existing

E. 16th/18th Street

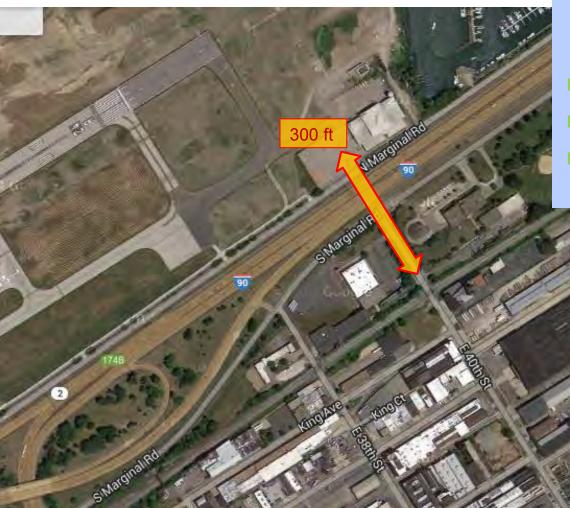
Burke Lakefront Airport

750

Potential

- Campus District connection
- Take off from parking lot, land by Burke & by Muni Lot
- Need to clear railroad tracks
- Vertical clearance & landing considerations

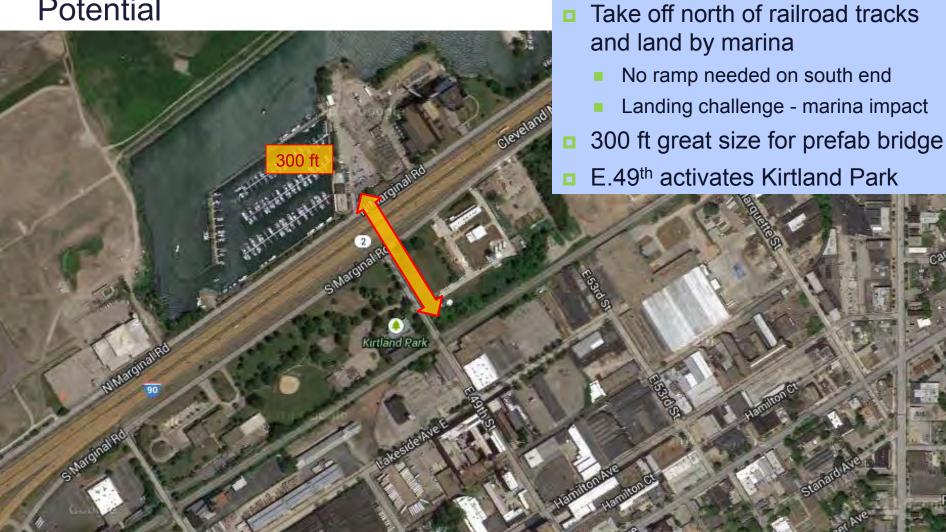
Muni Lot Bridge


Existing akewood

- Access via SR-2 WB ramps
- Sidewalk is narrow
- Widen bridge deck for bikes & peds
- Consider ramp modification to facilitate access (stop control)

E. 40th Street

Potential


- Take off north of railroad tracks and land by Aviation HS
 - No ramp needed on south end
- **300** ft great size for prefab bridge
- Easiest 'new' location
- E.40th connects to Woodland
 - Neighborhood connectivity

Ohio Technical College

E. 49th Street

Potential

E. 55th Street

14

Existing

- Lots of pavement at intersections
 - South Marginal
 - I-90 EB ramps
 - North Marginal

E. 72nd Street

Existing

E Trancis

BRANGEL

Gordon Park Pedestrian Bridge

Clevel

Existing

Phoise

E TRade

- Bridge over I-90
- Connects Gordon Park with lakefront
- Stairs or long ped ramp (north side)

MLK (Lake-to-Lakes Trail)

I-90 underpass

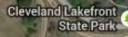
- Uncomfortable for bikes & peds
 - Doesn't quite get to the lake

- □ E.72nd-MLK
- □ E.55th Street
- □ North Marginal (E.9th St to E.55th St)
- Muni Lot Bridge

ODOT Safety Study

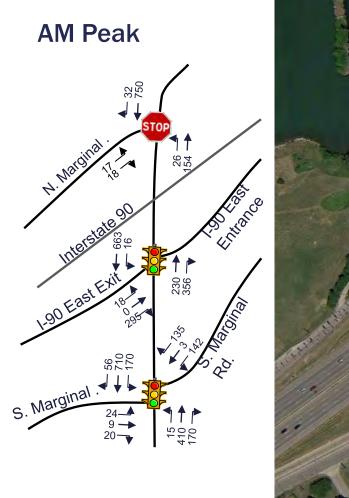
ODOT safety study

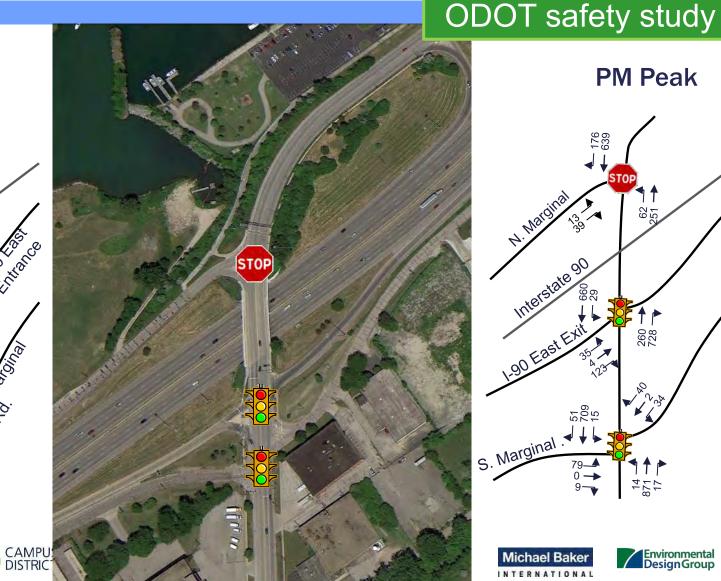
E.72nd Street & MLK interchange areas E.55th Street interchange area

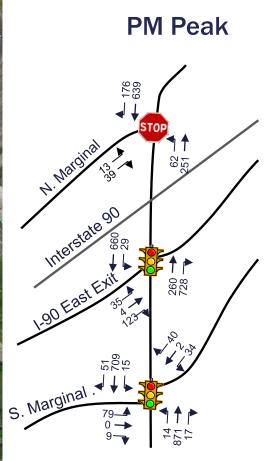


E.72nd - MLK Opportunities

- Study crash data to identify problem areas
- Potential reconfiguration of ramps as single interchange
- Potential changes to ramp intersections
- Modify MLK cross section to improve trail under bridge

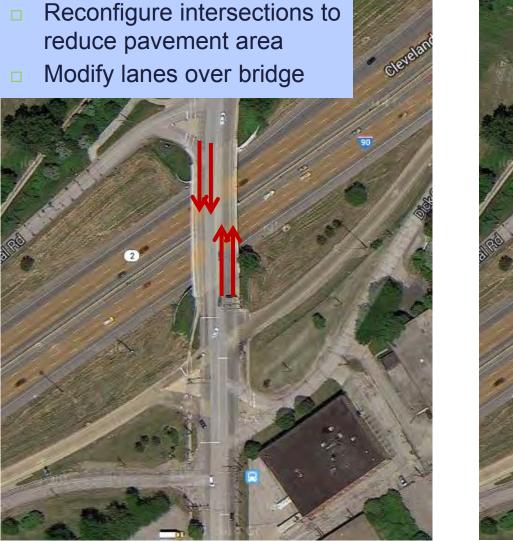

Elizindist

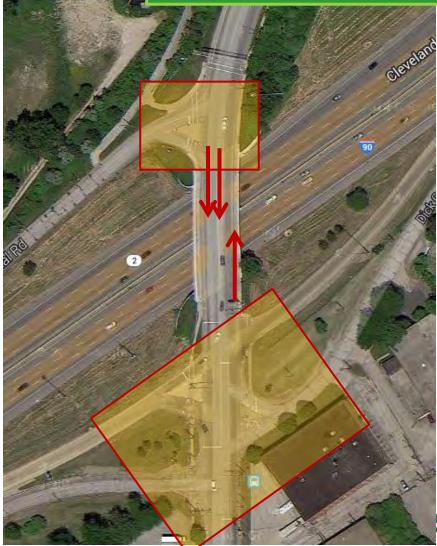




Traffic: E.55th St – Peak Hours

stclair superior





E.55th St Opportunities

ODOT safety study

Eastern Concept (MLK-E.72nd & E.55th)

North Marginal by Burke

Burke Lakefront Airport

DOWNTOWN

The Rock and Roll Ha

FirstEnergy Stadium

Churcherdiene

Payne Ave

(GET/ATENE

Astra

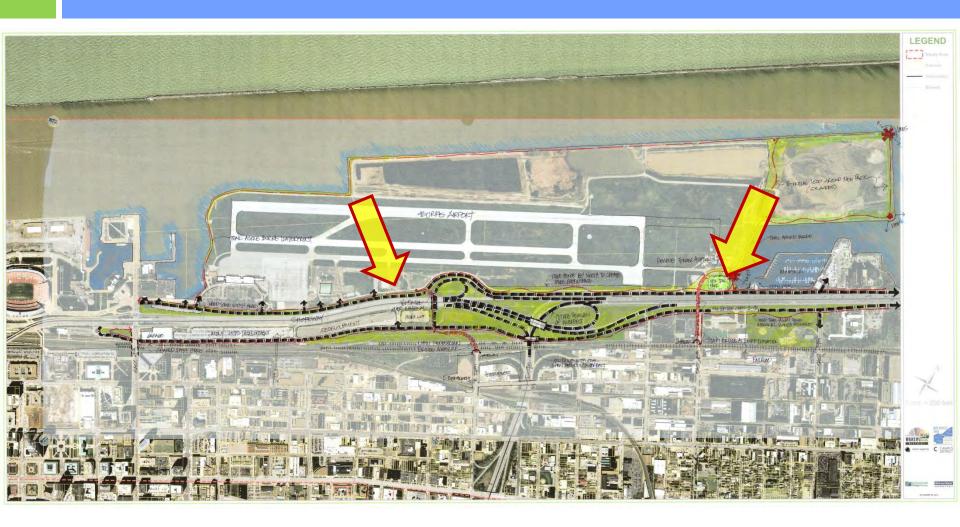
55

322

North Marginal – Existing

North Marginal – Existing

- Constrained width
- Proximity to Shoreway
- Unpleasant bike/ped experience



Central Concept

Options for North Marginal by Burke

Option 1: Two-Lane

Add 8 ft wide trail next to North Marginal

Option 2: One-Way

Reduce North Marginal to one-way road for 10 ft trail and more buffer space

Option 3: Bike/Ped (Trail Only)

Close section of North Marginal

Potential modification to Muni Lot Bridge access could help circulation

North Marginal Traffic at E.55th St

North Marginal Traffic volumes at E.55th Street
 AM Peak: 93 vph (35 EB + 58 WB)
 PM Peak: 290 vph (52 EB + 238 WB)

(Lower volumes betw Burke parking and Aviation HS)

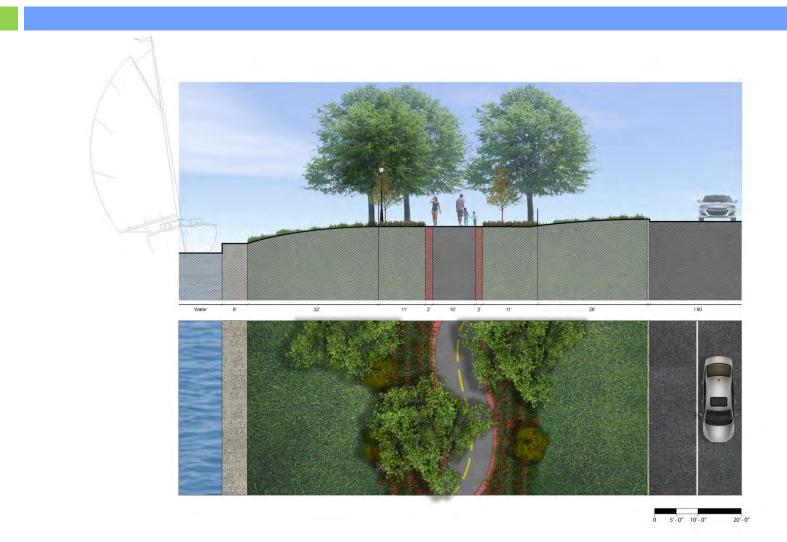
North Marginal as Two-Lane

AREHOUSE

North Marginal as Two-Lane

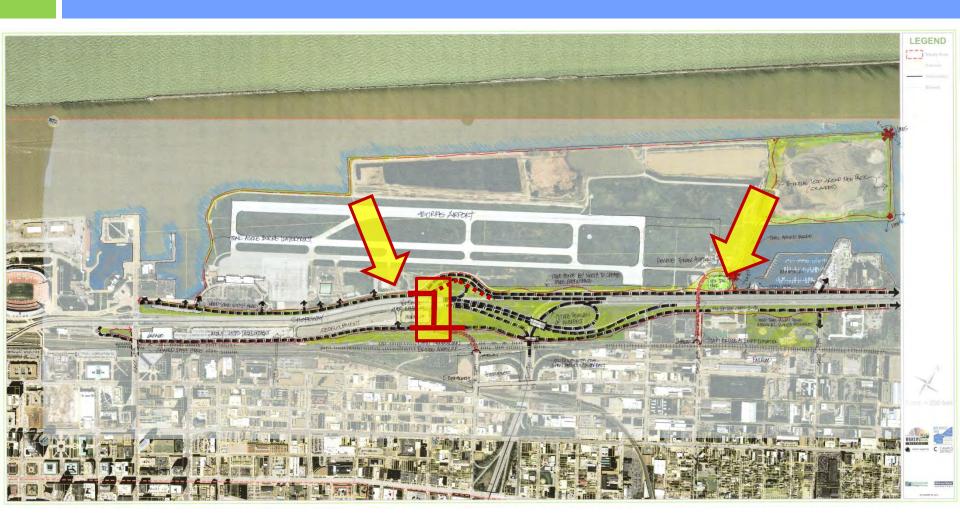
North Marginal as One-Way

North Marginal as One-Way



North Marginal Bike/Ped Only (Trail)

North Marginal Bike/Ped Only (Trail)



WAREHOUSE

Central Concept

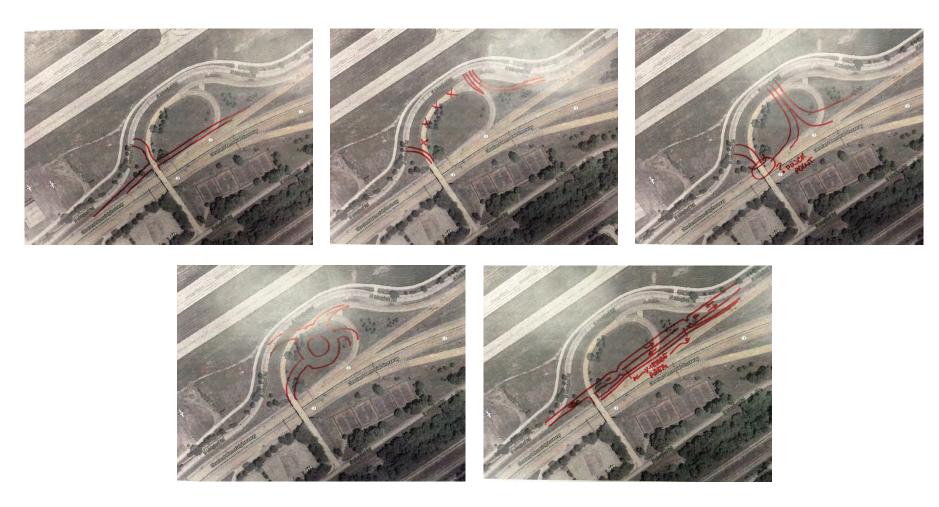
Muni Lot Bridge

SMarginaliRo

Cleveland Men

Reconfigure WB off ramp to clarify end of ramp and facilitate bike/ped accommodations

2


- Provide connection to North Marginal for bikes/peds (and maybe vehicles)
- Consider grade issues

^{darginal}Rd

Oleveland Memorial Shoreway

Muni Lot Bridge

Central Concept Combinations

A. Existing B. 2-lanes C. 1-lane

322

Burke Lakefront/Airport

A. Existing B. 2-lanes

DOWNTOWN

The Rock and Roll Have of Fame and Museum

FirstEnergy Stadium =

A. Existing B. 2-lanes C. 1-lane

D.Bike/ped only

in the second second

Plan Development: Next Steps

- Gather public input
- Concept evaluation & feasibility assessment
- Develop recommendations
- Present recommendations (public mtg May 2015)
- Prepare report

Your Input Matters!

What should this park look like? (6 green dots + 6 red dots)

3 boards with lots of photos

Pedestrian bridge locations

- (2 green dots + 2 red dots)
- Existing bridges / crossing locations
- Potential pedestrian bridge crossing locations

North Marginal (between E.9th and E.55th Streets) (1 green dot + 1 red dot)

- Two-way road with multi-use trail
- One-way road with wider multi-use trail
- Bike/pedestrian access only (widened linear park for non-motorized use)

Environmental

DesianGroup

BOARDS

THANK YOU!

NORTHEAST OHIO AREAWIDE COORDINATING AGENCY

MEMORANDUM

- TO: NOACA Board of Directors
- FROM: Grace Gallucci, Executive Director

DATE: March 6, 2015

RE: Resolution No. 2015-026 – Plan and TIP Amendments – 3rd Quarter State Fiscal Year (SFY) 2015

ACTION REQUESTED

The Board of Directors is asked to approve **Resolution No. 2015-026** which directs that NOACA's longrange transportation plan (Plan) and the Transportation Improvement Program (TIP) be amended to include the proposed projects as indicated. Please note that some of the projects listed are to be amended to the Plan, some to the TIP and others to both the Plan and **T**IP.

PREVIOUS ACTION

The Transportation Subcommittee (TS), Planning and Programming Committee, and Executive Committee have recommended this item for approval.

BACKGROUND/JUSTIFICATION FOR CURRENT ACTION

The proposed amendments to the Plan and the state fiscal year (SFY) 2014 – 2017 TIP have all been processed through project planning review (PPR). The projects include bridge, roadway and transit projects sponsored by various entities. The amendments also include projects currently programmed in the TIP that, per federal regulations, require an MPO resolution because the amounts of their respective cost decrease or increase exceeds the cost estimate threshold or new funding has been added to a project.

FINANCIAL IMPACT

The estimated total cost of the proposed projects is approximately \$22.2 million, which includes approximately \$9.4 million of NOACA controlled funds. Funding for these projects is being provided from a variety of federal, state, and local sources. Federal funding is provided by the Federal Highway Administration and Federal Transit Administration and is administered through NOACA and the Ohio Department of Transportation.

CONCLUSION/NEXT STEPS

Following Board approval, the amendments will be incorporated into the statewide TIP amendment in April 2015.

NOA	SFY 2014 - 2017 T	SFY 2014 - 2017 Transportation Improvement Program	ment Program		Resolutic	Resolution No. 2015-025
	Highwa	Highway and Bikeway Element	t			
		Amendments				3/6/15
DID	Project Description	Type of Work	Funding Data			AQ required?
95930	CUY D12 PPM FY2015	Preventive Maintenance	CE ODOT	\$9,600	2015	exempt
	Various routes and sections throughout District 12		CE NHPP	\$38,400	2015	
	Microsurface the following IR-77 locations: SR-82 EB Loop to IR-77		CE ODOT	\$404	2015	
	Nb, IK-77 SD EXII (0 Pleasarit valiey (Loop), and IK-77 ND EXII (0 Pleasant Valley (1 000)		CE HSIP	\$3,636	2015	
	THE AMOUNT OF THE COST DECREASE EVCEEDS THE		CO ODOT	\$33,000	2015	
	COST ESTIMATE THRESHOLD		CO NHPP	\$297,000	2015	
			CO ODOT	\$9,700	2015	
			CO HSIP	\$87,300	2015	
				\$479,040		
	CUY FULTON RD / W 28TH ST	Repair, rehabilitate and	PEDDCleve	\$175,000	2016	exempt
	Cleveland:	resurface	PEPDCleve	\$175,000	2016	
	Clark Ave to Detroit Rd	1.40 miles	CE Cleve	\$85,800	Plan	
			CE STP	\$343,200	Plan	
			CO Cleve	\$772,200	Plan	
			CO STP	\$3,088,800	Plan	
			I	\$4,640,000		
98548	CUY MLK BLVD	Rehabilitate structure	PEDDCleve	\$333,900	2015	exempt
	Cleveland:		PEPDCleve	\$333,900	2015	
	MLK Blvd over Doan Brook Creek approximately 1/3 mile south of		CO STP	\$172,000	Plan	
	IN SU AND JUST SOUTH OF EAST DIVU		CE STP	\$267,200	Plan	
			CO Cleve	\$66,800	Plan	
			CO Cleve	\$668,000	Plan	
			CO MBR	\$2,500,000	Plan	
				\$4,341,800		

PE=preliminary engineering, RW=right of way, C=construction, CE=construction engineering, CO=construction contract, PEDD=preliminary engineering detailed design, PEPD=preliminary engineering detailed design,

NOAI	SFY 2014 - 2017 Tr	SFY 2014 - 2017 Transportation Improvement Program	ent Program		Resolutic	Resolution No. 2015-025
	Highwa	Highway and Bikeway Element				
		Amendments				3/6/15
DID	Project Description	Type of Work	Funding Data			AQ required?
	CUY N MARGINAL	Rehabilitation	PEDDCleve	\$50,000	2015	exempt
	Cleveland:	1 20 miles	PEPDCleve	\$125,000	2015	
	E 72nd St to Cleveland ECL		CE Cleve	\$45,618	Plan	
	Irvolves three segments: F 72nd St to MI K .ir Dr		CE STP	\$182,474	Plan	
	MLK Jr Dr - N Marginal Rd to Lakeshore Blvd;		CO Cleve	\$410,566	Plan	
	Lakeshore Blvd - MLK Jr Dr to Cleveland ECL		CO STP	\$1,642,262	Plan	
				\$2,455,920		
	CUY N MARGINAL RD / S MARGINAL RD	Rehabiltate	PEDDCleve	\$50,000	2015	exempt
	Cleveland:	0.61 mile	PEPDCleve	\$75,000	2015	
	N Marginal Rd - IR-90 WB access ramp at West Blvd to Lorain		CE Cleve	\$84,084	Plan	
	Ave; and S Marginal Kd - vvestern Ave to vv 96th St N Marginal Rd from West Rivd to W 98th St is functionally		CE STP	\$75,416	Plan	
	classified as a local road and will be funded with local funds		CO Cleve	\$756,760	Plan	
		0.06 mile	CO STP	\$678,740	Plan	
				\$1,720,000		
12	CUY S MARGINAL RD	Rehabilitate	PEDDCleve	\$50,000	2015	exempt
	Cleveland:	o 76 milos	PEPDCleve	\$100,000	2015	
	E 9th St to E 55th St		CE Cleve	\$66,960	Plan	
			CE STP	\$267,840	Plan	
			CO Cleve	\$602,640	Plan	
			CO STP	\$2,410,560	Plan	
				\$3,498,000		
94367	CUY /LAK IR271-13.16/00.00 NOISE	Noise Wall Replacement &	CE ODOT	\$5,100	2015	exempt
	CUY IR 271-13.16 (US 322) to 16.65 (Mayfield/Highland Hts	Repair	CE NHPP	\$45,900	2015	
	Corporation Line): Mayfield Hts, Highland Hts	3.49 miles	CO ODOT	\$260,000	2015	
	LAN IN 2/1-00.00 (CUYARIOGA/LAKE COURTY LITE) TO 1./3 (IN 30): Willoughby Hills		CO NHPP	\$2,340,000	2015	
	Replace deteriorated concrete panels and reuse existing steel posts			\$2,651,000		
	COST INCREASE OVER THE COST ESTIMATE THRESHOLD	1.75 miles				

PE=preliminary engineering, RW=right of way, C=construction, CE=construction engineering, CO=construction contract, PEDD=preliminary engineering detailed design, PEPD=preliminary engineering detailed design,

RESOLUTION OF THE BOARD OF DIRECTORS OF THE NORTHEAST OHIO AREAWIDE COORDINATING AGENCY

<u>WHEREAS</u>, the Northeast Ohio Areawide Coordinating Agency (NOACA) is the Metropolitan Planning Organization (MPO) for the counties of Cuyahoga, Geauga, Lake, Lorain, and Medina, and the areawide water quality management agency for the same region; and

<u>WHEREAS</u>, the Congress of the United States, through law, and the U.S. Department of Transportation, through regulation, have determined that MPOs shall create a long-range, 20-year transportation plan and a four-year Transportation Improvement Program (TIP) that list federal-aid transportation projects expected to be implemented in each of the program years; and

<u>WHEREAS</u>, the NOACA Board of Directors' Regional Transportation Investment Policy requires that all proposed federal-aid transportation projects be processed through project planning review in order to meet transportation plan goals and federal requirements; and

WHEREAS, the following projects are proposed amendments to the NOACA long-range transportation plan (Connections⁺ 2035):

- a) City of Cleveland: CUY FULTON RD/W 28TH ST This project involves rehabilitation and resurfacing along Fulton Road, from Clark Avenue to Franklin Avenue and West 28th Street from, Franklin Avenue to Detroit Avenue, in Cleveland.
- b) City of Cleveland: CUY MLK BLVD: PID No. 98548 This project involves either relining or removing and replacing the two corrugate metal plate dual arch structures on Martin Luther King Jr. Drive over Doan Brook Creek, approximately one-third of a mile south of IR-90 and just south of East Boulevard in the City of Cleveland.
- c) City of Cleveland: CUY NORTH MARGINAL RD This project involves rehabilitation along North Marginal Road, from East 72nd Street to Martin Luther King Jr. Drive; Martin Luther King Jr. Drive, from North Marginal Road to Lakeshore Boulevard; and Lakeshore Boulevard, from Martin Luther King Jr. Drive to the eastern corporate limit, in Cleveland.
- d) City of Cleveland: CUY NORTH MARGINAL RD/SOUTH MARGINAL RD This project involves rehabilitation along North Marginal Road, from West Boulevard to Lorain Avenue; and along South Marginal Road, from Western Avenue to West 98th Street, in Cleveland.
- e) City of Cleveland: CUY SOUTH MARGINAL RD This project involves rehabilitation along South Marginal Road, from the east end of IR-90 South Marginal Road at the IR-90 eastbound exit ramp to East 9th Street to East 55th Street, in Cleveland.
- f) Greater Cleveland Regional Transit Authority (GCRTA): PID No. 99619: GCRTA Trolley Bus Replacement Program - This project involves the replacement of four 35-foot GCRTA trolley buses in 2015.

WHEREAS, the following projects are proposed amendments to the state fiscal year (SFY) 2014 - 2017 TIP:

a) Ohio Department of Transportation (ODOT) District 12: CUY D12 PPM FY2015: PID No. 95930 – This project involves preventative maintenance on various routes and sections

throughout District 12. Microsurfacing at the following IR-77 locations: SR-82 EB Loop to IR-77 NB, IR-77 SB exit to Pleasant Valley (Loop), and IR-77 NB exit to Pleasant Valley (Loop).

- b) City of Cleveland: CUY FULTON RD/W 28TH ST The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves rehabilitation and resurfacing along Fulton Road, from Clark Avenue to Franklin Avenue and West 28th Street from, Franklin Avenue to Detroit Avenue, in Cleveland.
- c) City of Cleveland: CUY MLK BLVD: PID No. 98548 The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves either relining or removing and replacing the two corrugate metal plate dual arch structures on Martin Luther King Jr. Drive over Doan Brook Creek, approximately one-third of a mile south of IR-90 and just south of East Boulevard in the City of Cleveland.
- d) City of Cleveland: CUY NORTH MARGINAL RD The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves rehabilitation along North Marginal Road, from East 72nd Street to Martin Luther King Jr. Drive; Martin Luther King Jr. Drive, from North Marginal Road to Lakeshore Boulevard; and Lakeshore Boulevard, from Martin Luther King Jr. Drive to the eastern corporate limit, in Cleveland.
- e) City of Cleveland: CUY NORTH MARGINAL RD/SOUTH MARGINAL RD The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves rehabilitation along North Marginal Road, from West Boulevard to Lorain Avenue; and along South Marginal Road, from Western Avenue to West 98th Street, in Cleveland.
- f) City of Cleveland: CUY SOUTH MARGINAL RD The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves rehabilitation along South Marginal Road, from the east end of IR-90 South Marginal Road at the IR-90 eastbound exit ramp to East 9th Street to East 55th Street, in Cleveland.
- g) Ohio Department of Transportation (ODOT): CUY/LAK IR-271-13.16/00.00 NOISE: PID No. 94367 – This project involves noise wall replacement and repair from US Route 322 to Mayfield/Highland Heights corporation line in Mayfield Heights and Highland Heights. LAK IR-271-00.00 (Cuyahoga/Lake County Line) to IR-90 in Willoughby Hills.
- h) Greater Cleveland Regional Transit Authority (GCRTA): PID No. 99619: GCRTA Trolley Bus Replacement Program - This project involves the replacement of four 35-foot GCRTA trolley buses in 2015.
- i) Laketran: Laketran Bus Improvement Program: PID No. 89669 This project involves the replacement of four Laketran paratransit vans in 2015.

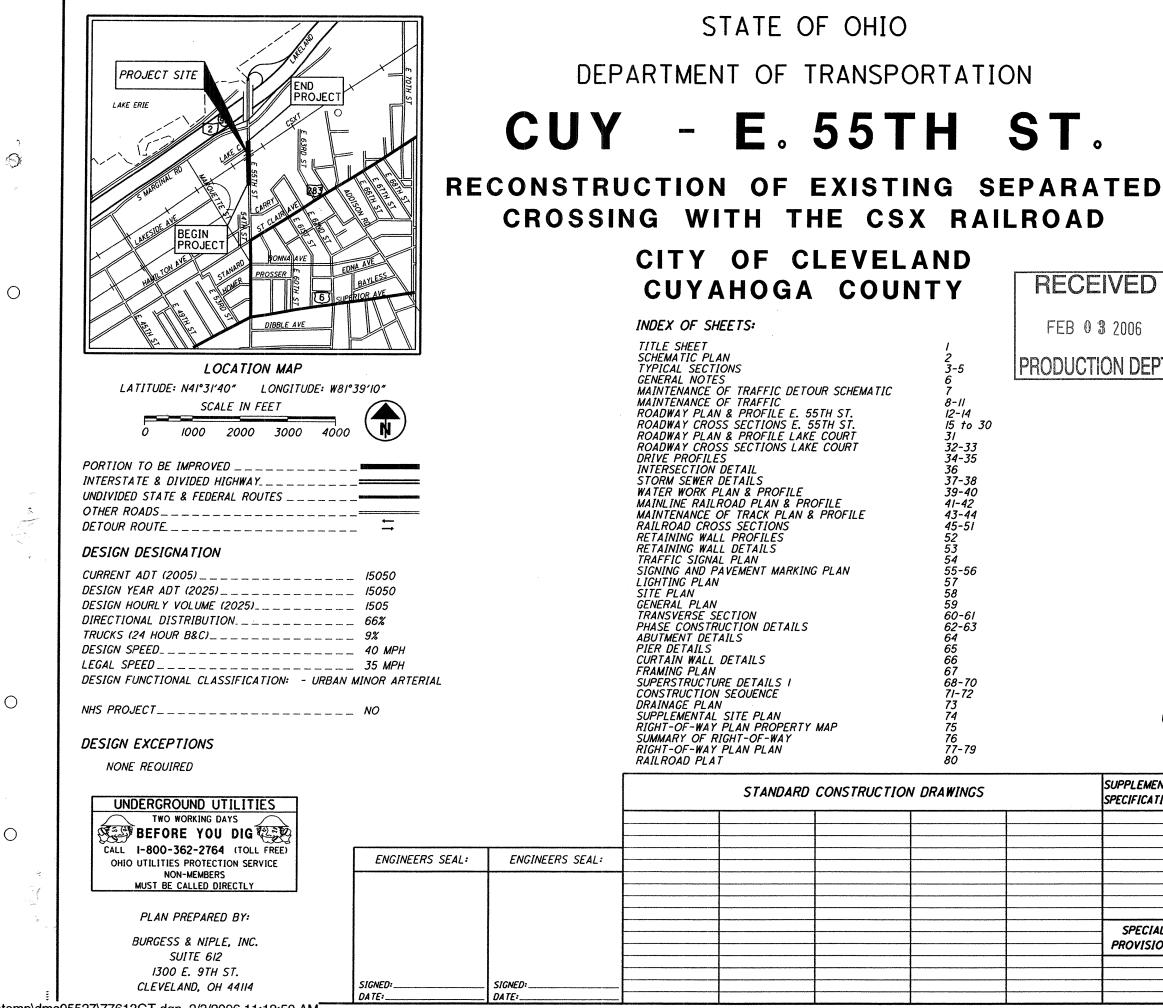
WHEREAS, all above projects are excluded from regional emissions analysis and as such do not affect the existing plan and TIP's air quality conformity determination; and

WHEREAS, the above projects are consistent with current financial forecasts and plans; and

<u>WHEREAS</u>, it is expected that the project sponsors will, in good faith, endeavor to address comments and recommendations raised during project planning review and will provide evidence of such, prior to the project advancing; and

<u>WHEREAS</u>, the above projects are recommended by the Transportation Subcommittee (TS), Planning and Programming Committee and the Executive Committee as amendments to the Plan and TIP as appropriate.

NOW, THEREFORE, BE IT RESOLVED by the Board of Directors of the Northeast Ohio Areawide Coordinating Agency, consisting of 45 principal officials serving general purpose local governments throughout and within the counties of Cuyahoga, Geauga, Lake, Lorain, and Medina that:

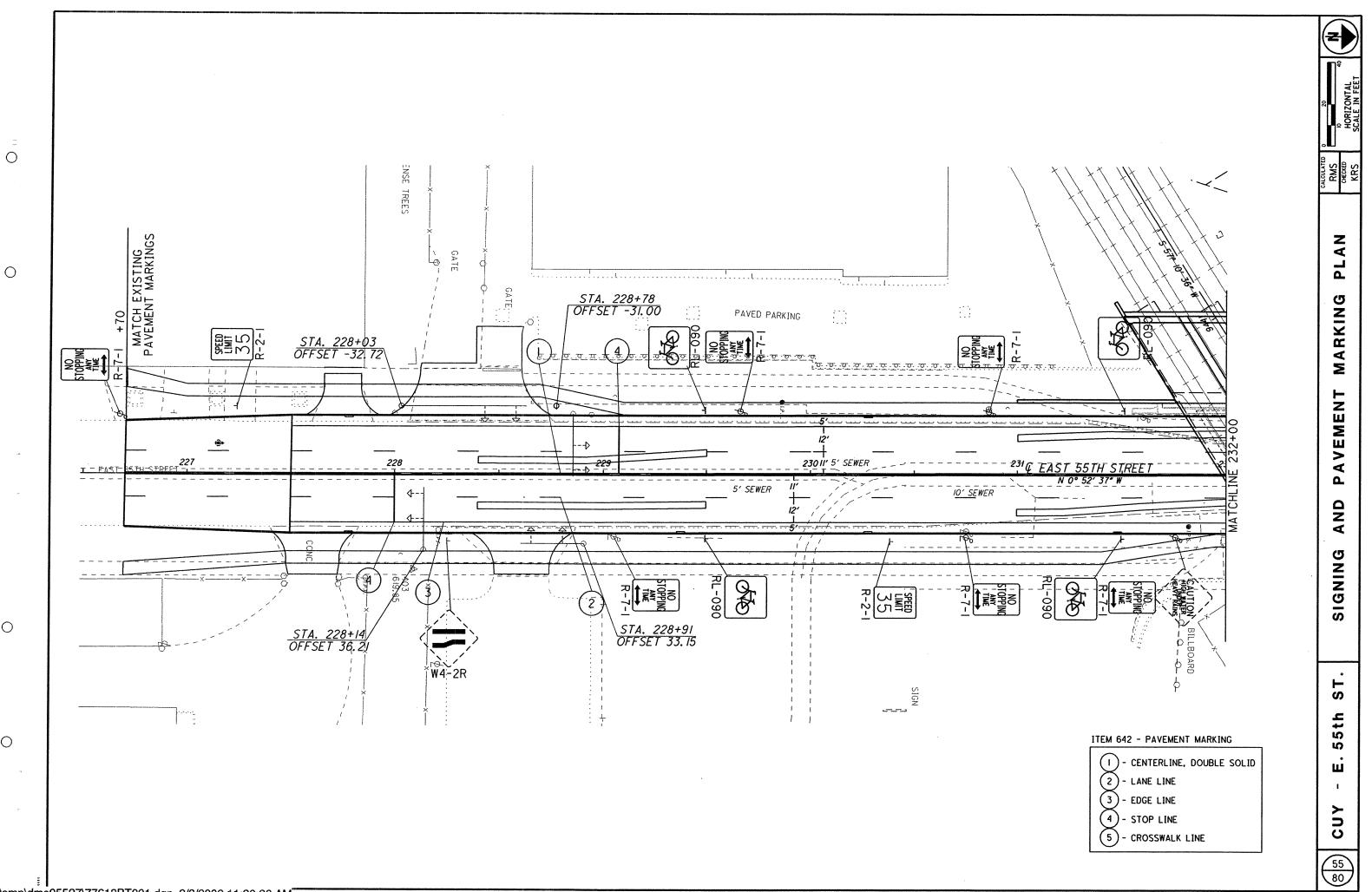

<u>Section 1</u>: The referenced projects have had appropriate review and are recommended for approval.

Section 2: The NOACA transportation plan and TIP are amended to include the projects for project development and processing review purposes.

<u>Section 3:</u> The Executive Director is authorized to transmit certified copies of this resolution to appropriate federal, state, and local agencies.

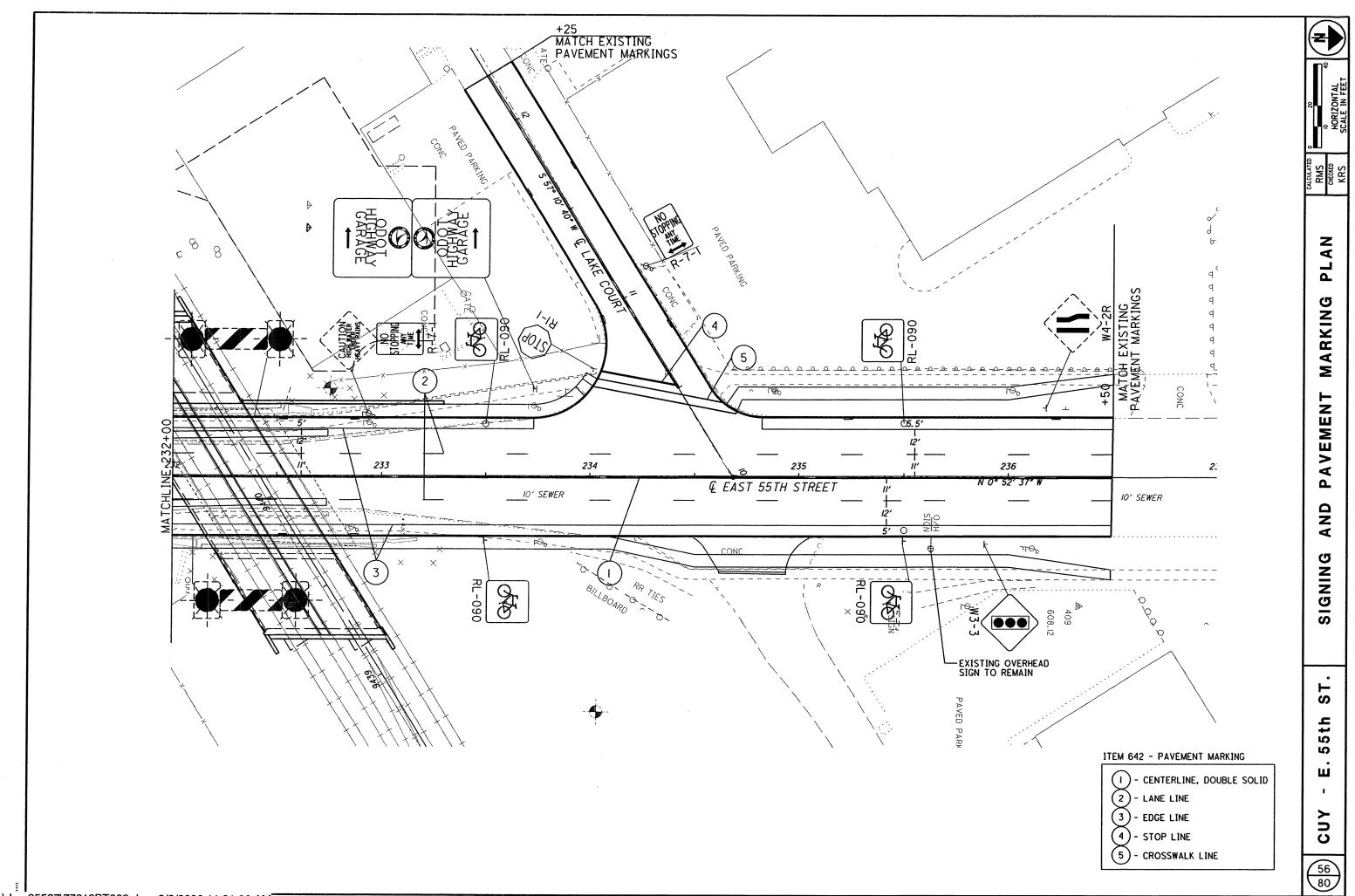
Certified to be a true copy of a Resolution of the Board of Directors of the Northeast Ohio Areawide Coordinating Agency adopted this 13th day of March 2015.

Secretary: Muchual Juramen


C:\temp\dms05527\77613GT.dgn 2/3/2006 11:12:50 AM

				
	PROJECT DESCRIPT IMPROVEMENT OF 0.2 STREET BY WIDENING F INCREASING THE VERTIN CSX RAILROAD BY REPU STRUCTURE AND 0.42 M REVISED PROFILE.	23 MILES OF EAST ROM 2 LANES TO 4 CAL CLEARANCE UNI ACEMENT OF THE E	LANES, DER THE BRIDGE	FEDERAL PROJECT NO.
TED	PROJECT EARTH DISTURBL ESTIMATED CONTRACTOR EA NOTICE OF INTENT EARTH	RTH DISTRUBED AREA:	3.18 ACRES 1.75 ACRES 4.93 ACRES	
IVED				PID NO. 77613
3 2006 ON DEPT.				JECT NO.
	2005 SPECIFICATIC THE STANDARD SPECI OHIO, DEPARTMENT OF CHANGES AND SUPPLEME IN THE PROPOSAL SHALL	FICATIONS OF THE TRANSPORTATION, ENTAL SPECIFICATIO	INCLUDING DNS LISTED	CONSTRUCTION PROJECT NO
S	I HEREBY APPROVE T THAT THE MAKING OF T REQUIRE THE CLOSING HIGHWAY AND THAT DET AS INDICATED ON SHEE	THIS IMPROVEMENT TO TRAFFIC OF TH TOURS WILL BE PRO T 6.	WILL E	RAILROAD INVOLVEMENT CSX RAILROAD
SUPPLEMENTAL	-			SΤ.
SPECIFICATIONS				5 T H
	APPROVED DATEMAYO	DR, CITY OF CLEVE	LAND	- E.58
SPECIAL PROVISIONS	APPROVED DATE DIST	RICT DEPUTY DIREC	TOR	сиУ
	APPROVED DATE DIRE TRAN	CTOR, DEPARTMENT ISPORTATION	OF	

RECEIVED


FEB 0 3 2006

PRODUCTION DEPT.

Ο

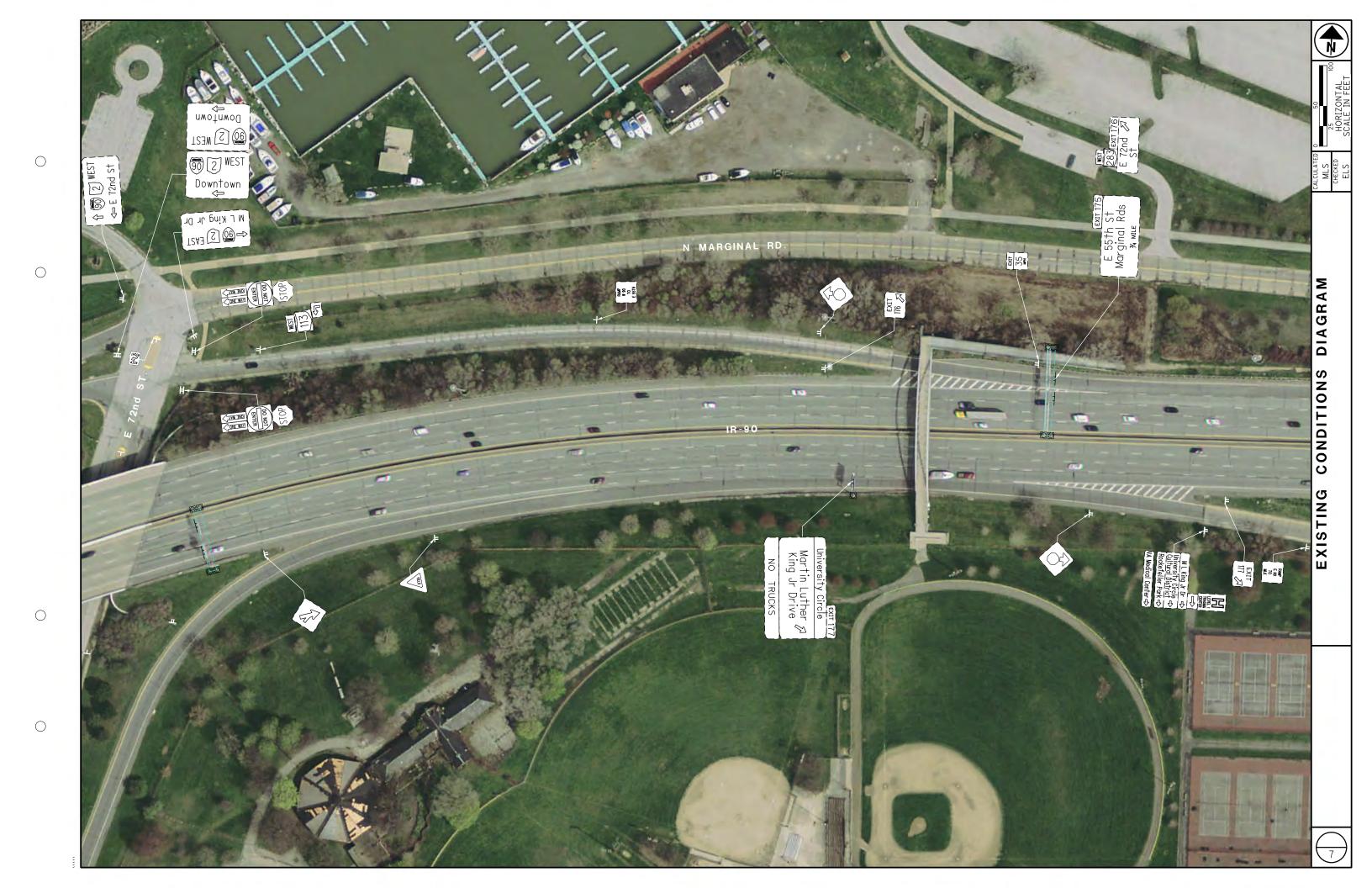
Ο

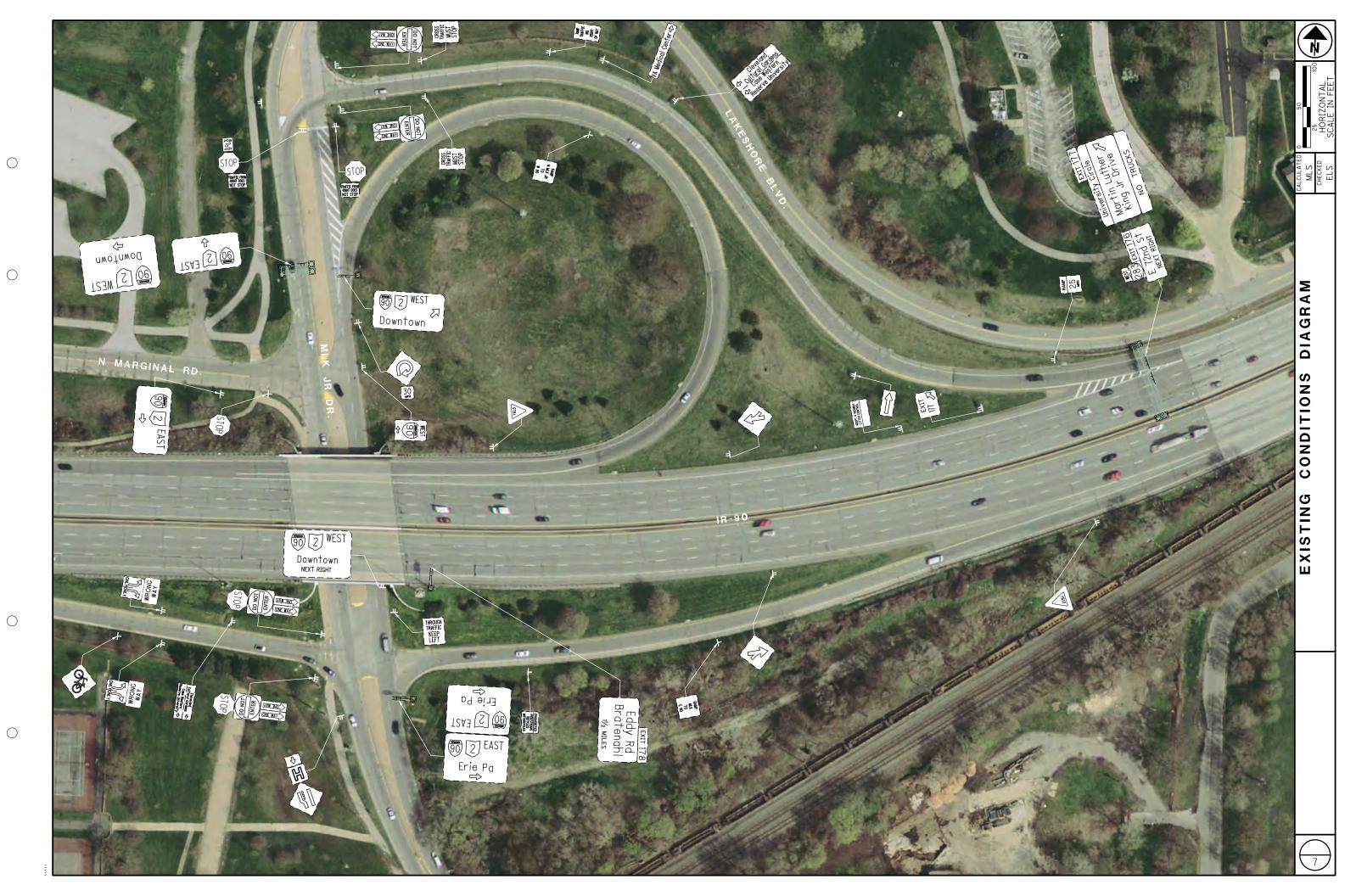
Ο

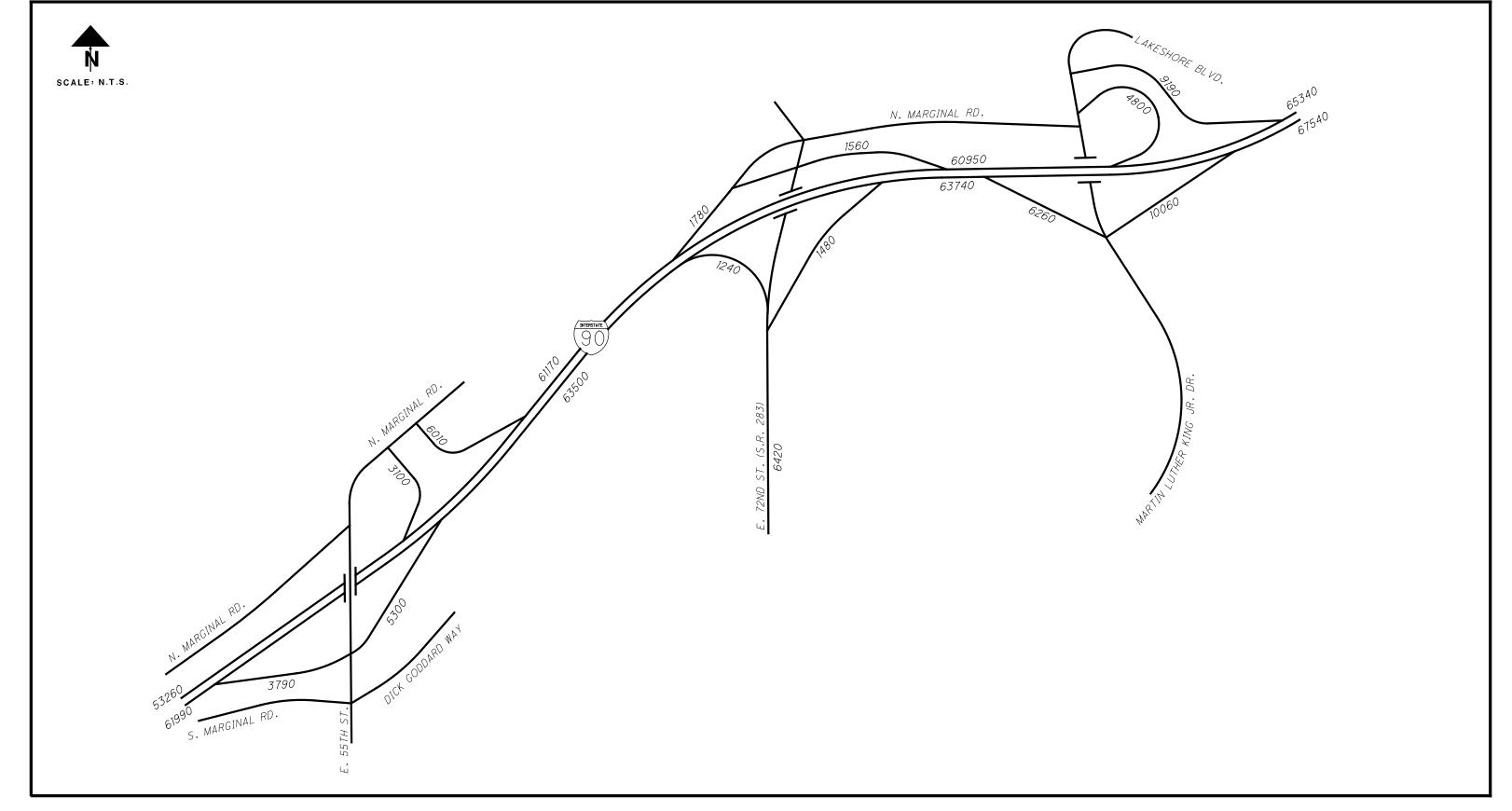
Ο

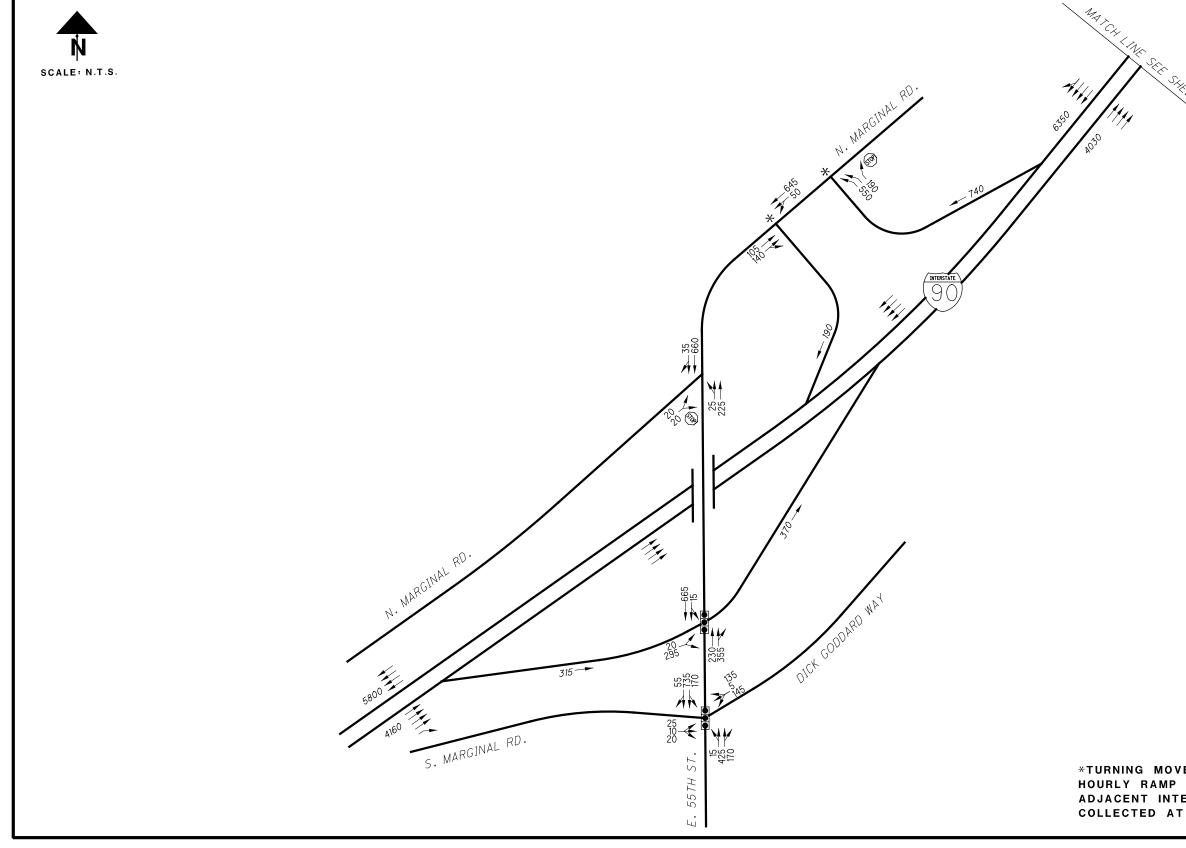
Ο

Ο



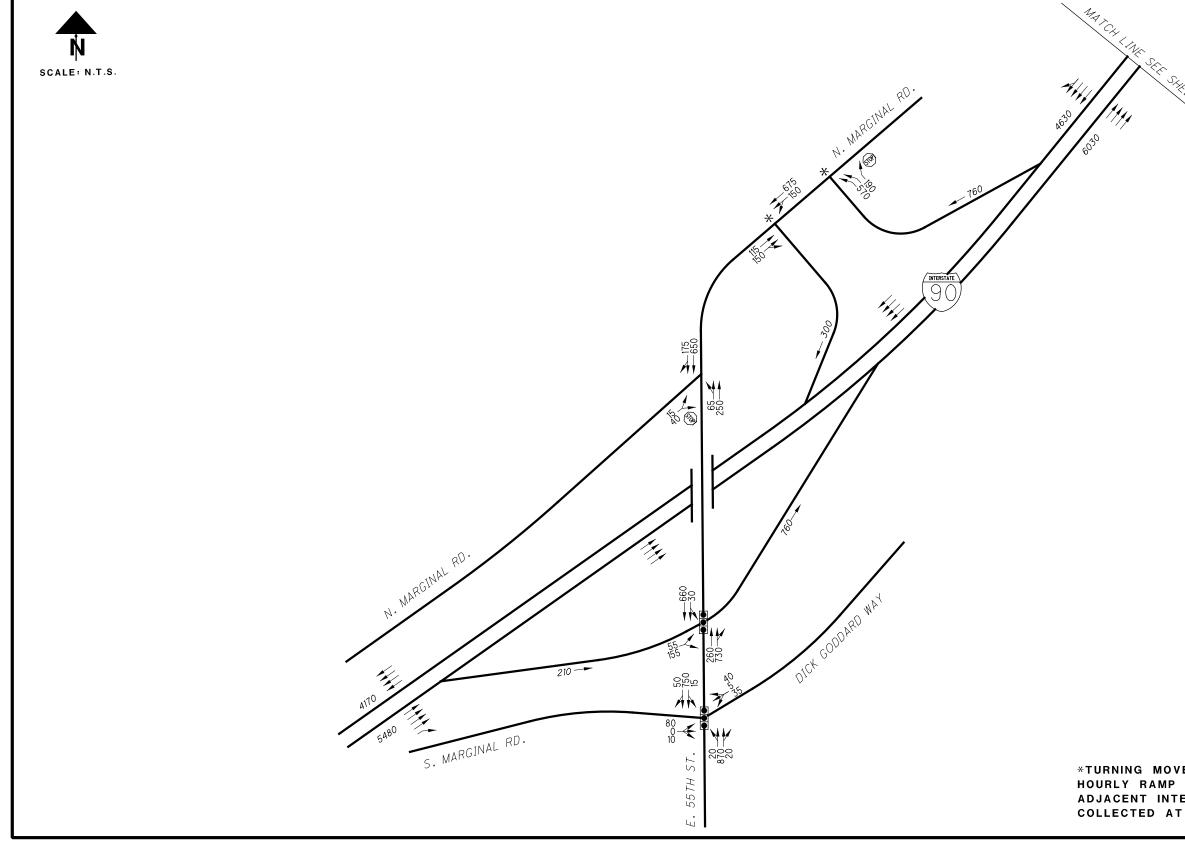




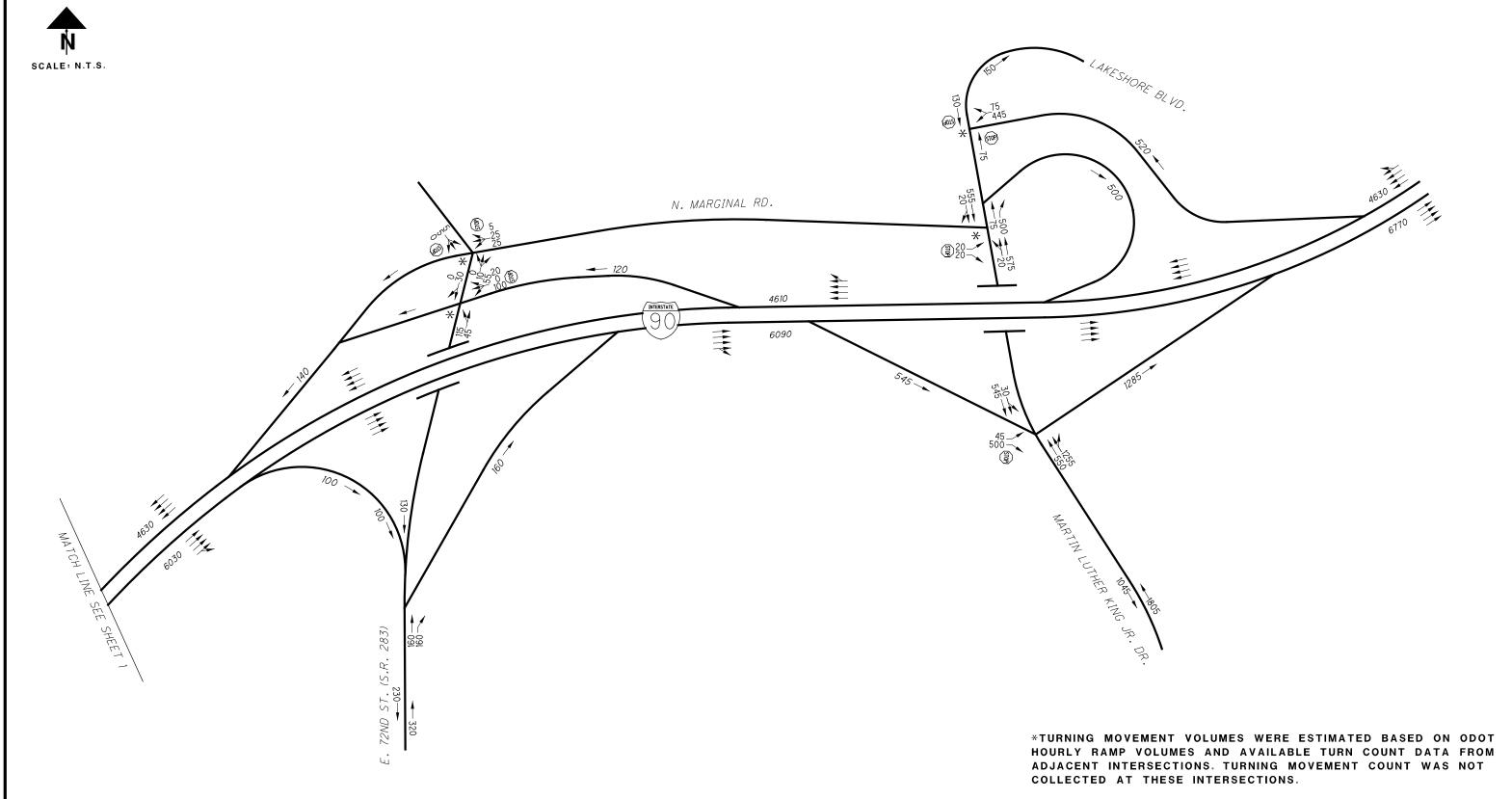

 \bigcirc

> CUY-90-19.5/21.3 SAFETY STUDY Design Year (2034) ADT

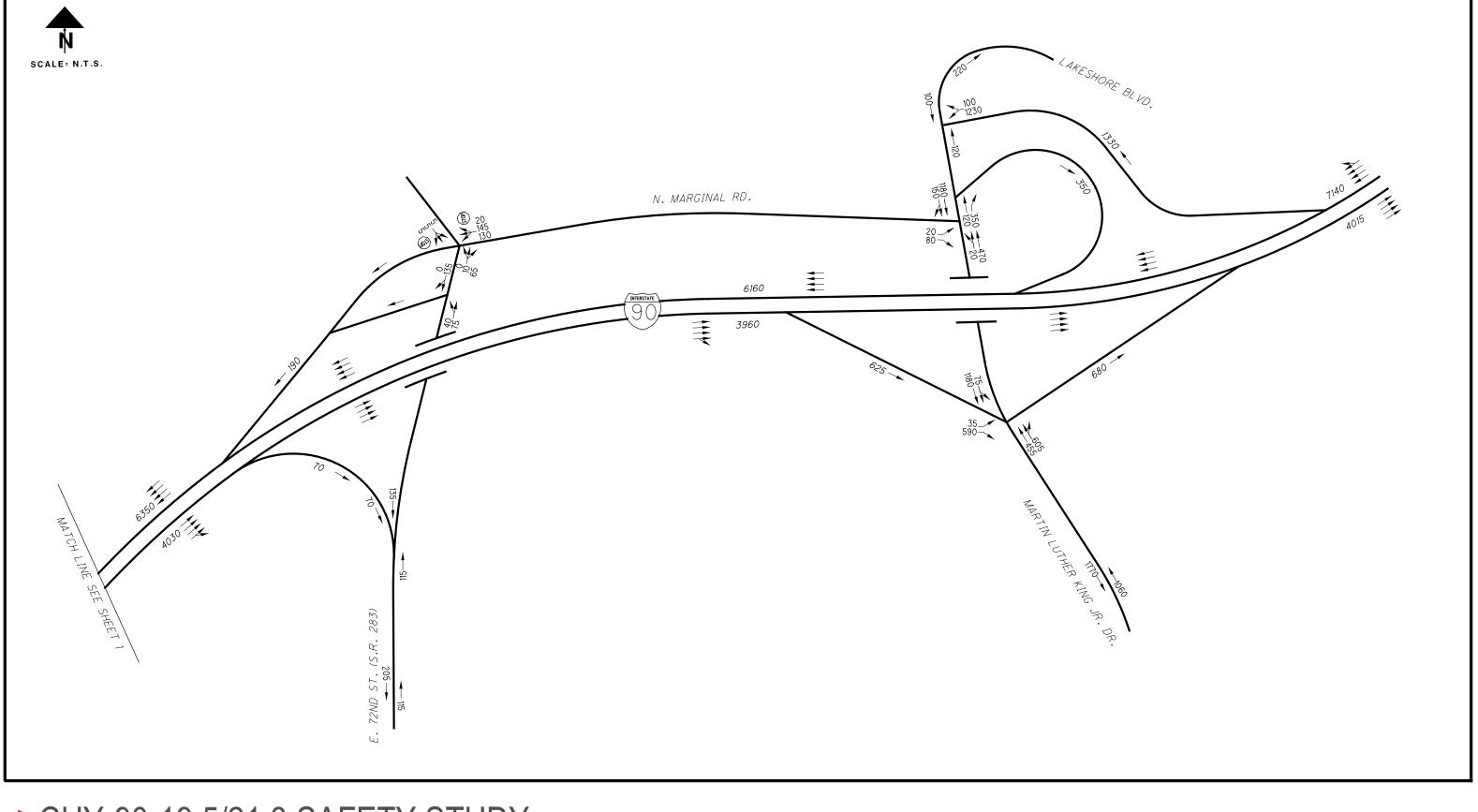
>CUY-90-19.5/21.3 SAFETY STUDY Design Year (2034) AM Peak Hour (1 of 2)

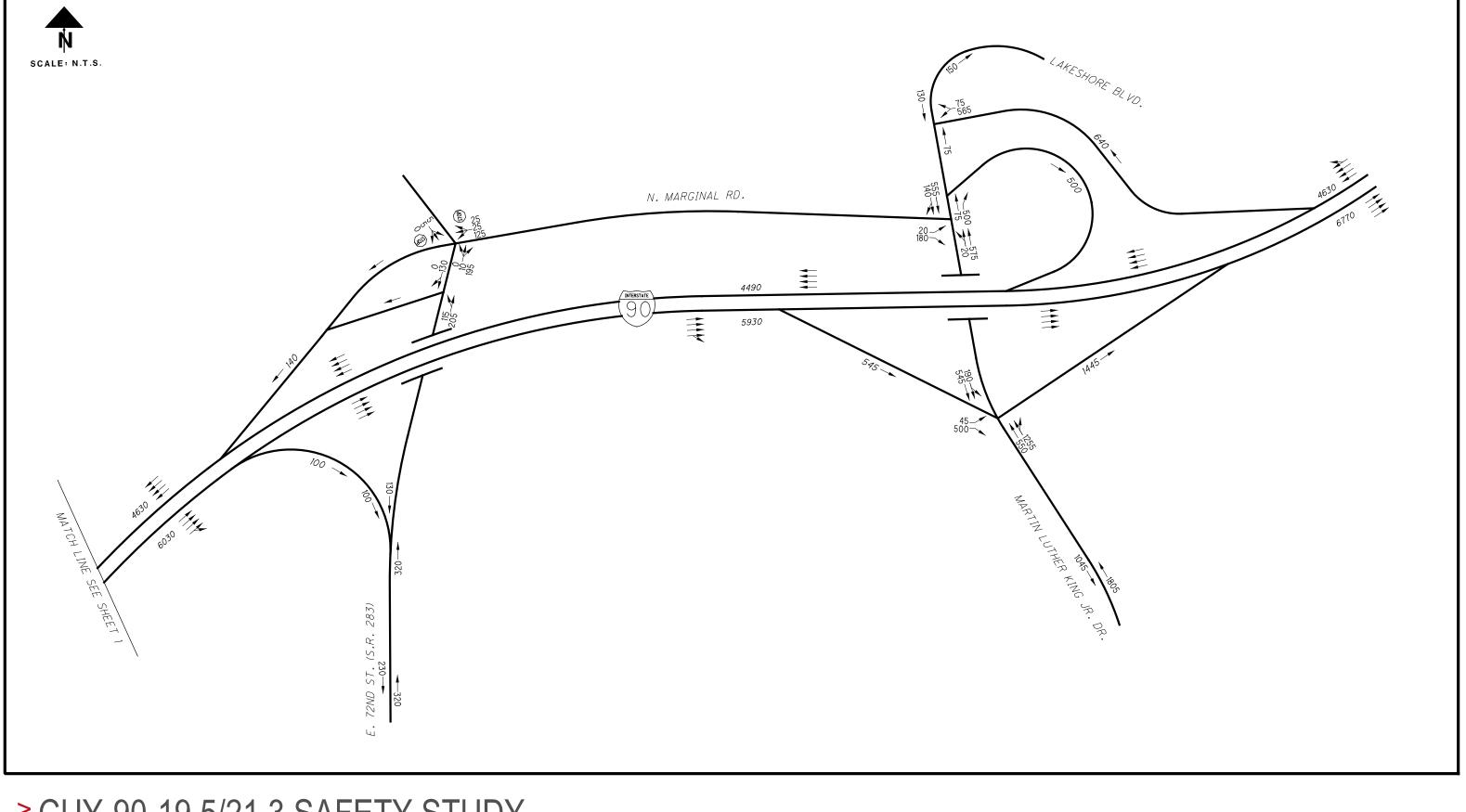

*TURNING MOVEMENT VOLUMES WERE ESTIMATED BASED ON ODOT HOURLY RAMP VOLUMES AND AVAILABLE TURN COUNT DATA FROM ADJACENT INTERSECTIONS. TURNING MOVEMENT COUNT WAS NOT COLLECTED AT THESE INTERSECTIONS.

> CUY-90-19.5/21.3 SAFETY STUDY Design Year (2034) AM Peak Hour (2 of 2)



> CUY-90-19.5/21.3 SAFETY STUDY Design Year (2034) PM Peak Hour (1 of 2)


*TURNING MOVEMENT VOLUMES WERE ESTIMATED BASED ON ODOT HOURLY RAMP VOLUMES AND AVAILABLE TURN COUNT DATA FROM ADJACENT INTERSECTIONS. TURNING MOVEMENT COUNT WAS NOT COLLECTED AT THESE INTERSECTIONS.


> CUY-90-19.5/21.3 SAFETY STUDY Design Year (2034) PM Peak Hour (2 of 2)

>CUY-90-19.5/21.3 SAFETY STUDY Design Year (2034) AM Peak Hour (Build Condition)

>CUY-90-19.5/21.3 SAFETY STUDY Design Year (2034) PM Peak Hour (Build Condition)

CUY-90 Data Collection Summary Seasonally Adjusted Counts (2011-2014)

ST	ATION ID	576	576	40318	40318	40218	41018	63318	63418	63718	63918	64018	64118	64218	64318	64418	64518	64618	64718	64818	66018	66118	66218	66318
L	DCATION	PERMANENT COUNT STATION, SLM 24.33 (EASTBOUND)	PERMANENT COUNT STATION, SLM 24.33 (WESTBOUND)	LAKESHORE / SR-283 TO WB IR-90	EB IR-90 TO LAKESHORE / SR-283	E 72ND ST TO EB IR-90	WB IR-90 TO E 72ND ST	WATERLOO TO WB IR- 90	EB IR-90 TO WATERLOO	EB IR-90 TO E 140TH ST	WB IR-90 TO EDDY DR	EDDY DR TO WB IR-90	EB IR-90 TO EDDY DR	EDDY DR TO EB IR-90	WB IR-90 TO MARTIN LUTHER KING JR DR	MARTIN LUTHER KING JR DR TO WB IR-90	EB IR-90 TO MARTIN LUTHER KING JR DR	MARTIN LUTHER KING JR DR TO EB IR-90	E 72ND ST TO WB IR-90	EB IR-90 TO E 72ND ST	WB IR-90 TO N MARGINAL RD	N MARGINAL RD TO WB IR-90	EB IR-90 TO E 55TH ST	E 55TH ST TO EB IR-90
DAT	E COLLECTED	05/07/14		08/08/13	08/08/13	08/06/13	08/06/13	10/06/11	10/06/11	10/06/11	08/06/13	10/12/11	10/12/11	10/12/11	10/24/11	10/24/11	10/25/11	11/16/11	10/19/11	10/19/11	11/16/11	11/16/11	08/06/13	08/06/13
	SEASONAL FACTOR	0.916	0.916	0.857	0.857	0.907	0.907	0.896	0.896	0.896	0.907	0.927	0.927	0.927	0.962	0.962	0.939	0.910	0.927	0.927	0.910	0.910	0.907	0.907
-	-						0.907							0.927								27		
	0:00	529 320	350 232	35	24 13	10	9	90 67	113 57	29 16		89 50		41	78	66 35	47	120 73	15 13	18 15	38 22	27	26 16	47 28
	2:00	248	191	3		7	11	33		10				41			12		13	13	17	14	10	20
	3:00	243	287	9	7	12		40		8	30			30			23		6	4	25	5	13	19
≥	4:00	373	493	28	9	10		70		5	28			32		13	36		14	7	58	15	36	26
: DAY	5:00	1031	1679	37		15		164		25				80	296	39	123		40	15	125	30	73	25
K OF	6:00	1977	4553	56		37		316		68	182	291	202	173		96	409	177	84	48	412	56	242	104
HOUR	7:00	3106	5929	79	45	57	128	520	574	116	337	445	392	256	659	239	415	446	191	58	740	147	286	190
H	8:00	2795	5443	73	45	53	92	484	519	107	325	449	381	279	879	252	428	365	135	70	548	142	218	231
, BY	9:00	2261	3136	45	41	54	62	378	426	82	284	351	324	247	586	228	452	278	106	59	374	107	174	231
IES	10:00	2001	2514	45	65	63	68	339	358	99	266	336	309	220	432	200	351	327	91	57	269	122	145	242
VOLUMES,	11:00	2227	2345	61	48	75	71	332		111	284	351	343	278	392		307	375	77	54	277	171	179	285
IO V	12:00	2343	2405	41	51	63	93	390	356	82		363		333	438	306	334	450	99	83	260	147	194	352
	13:00	2522	2514	69		69		401		89		350	364	307		255	337	473	95	61	263	170	180	378
JST	14:00	3320	2945	81		106		565		122				362		402	423		133	79	359	223	207	394
ADJUSTED	15:00	4758	3357	87		138		603		145		478		460	473	440	428		142	93	763	195	209	481
	16:00	5803	3546	97		143	119	584		159		416		520	416	504	402		124	102	447	238	156	614
ALL	17:00	4910	3632	69		151	88	546		150		409		522		392	450	1017	114	95	453	166	168	561
SEASONALLY	18:00	4231	2812	61		93		344		118		344		375	374	316	334	633	95	98	184	111	122	297
AS	19:00	2417	1858	39		86		277		101		243	321	291	254	231	251	501	66	51	113	106	83	180
SE	20:00	2206	1483	39		56		190		87		218		247	240	175	227	496	44	49	80	98	82	231
	21:00 22:00	1873	1340	44		57		166		77		176		186	186	125	173		28	48	86	56	107	163
	22:00	1575 1198	1041 728	<u>35</u> 55		41	36 33	168 117		65		155 113		186	190 136	108	146 109		26	42	52	39	63 46	110 85
	TOTAL	54244	728 54810	55 1201		34 1438		7184		62 1934		6383	159 6486	109 5645		86 4801	6256		25 1776	26 1238	43 6007	43 2436	_	5302
	TOTAL	54244	54810	1201	11/8	1438	1521	/184	/0/9	1934	5044	0383	0480	5045	0401	4001	0250	9190	1//0	1238	0007	2430	5039	550Z

CUY-90 Data Collection Summary Study Area Ramp Volumes

ST	ATION ID	40218	41018	64318	64418	64518	64618	64718	64818	66018	66118	66218	66318
LC	DCATION	E 72ND ST TO EB IR-90	WB IR-90 TO E 72ND ST	WB IR-90 TO MARTIN LUTHER KING JR DR	MARTIN LUTHER KING JR DR TO WB IR-90	EB IR-90 TO MARTIN LUTHER KING JR DR	MARTIN LUTHER KING JR DR TO EB IR-90	E 72ND ST TO WB IR-90	EB IR-90 TO E 72ND ST	WB IR-90 TO N MARGINAL RD	N MARGINAL RD TO WB IR-90	EB IR-90 TO E 55TH ST	E 55TH ST TO EB IR-90
DAT	E COLLECTED	08/06/13	08/06/13	10/24/11	10/24/11	10/25/11	11/16/11	10/19/11	10/19/11	11/16/11	11/16/11	08/06/13	08/06/13
	VTH RATE (%)	0.126	0.126	0.41	0	0	0.41	0	0	0	1.177	1.177	0
GRO	WTH PERIOD	21	21	23	23	23	23	23	23	23	23	21	21
	0:00	10	9		66	47	131	15	18	38	35	33	47
	1:00	5	7	36	35	38	80	13	15	22	10	20	28
	2:00	7	11	27	23	12	46	14	6	17	17	19	27
	3:00	12	5	38	23	23	35	6	4	25	7	16	19
≿	4:00	10	15	93	13	36	25	14	7	58	19	45	26
ð	5:00	16	27	324	39	123	120	40	15	125	38	92	25
Ъ	6:00	38	90	948	96	409	193	84	48	412	71	302	104
Ъ	7:00	59	131	721	239	415	488	191	58	740	186	356	190
오	8:00	54	94	962	252	428	399	135	70	548	180	271	231
Bγ	9:00	56	63	641	228	452	304	106	59	374	136	217	231
ES,	10:00	65	70	473	200	351	357	91	57	269	155	181	242
Ξ	11:00	77	73	430	247	307	410	77	54	277	217	223	285
סדר	12:00	65	96	479	306	334	492	99	83	260	186	242	352
ž	13:00	71	86	481	255	337	518	95	61	263	216	224	378
334	14:00	109	92	525	402	423	667	133	79	359	283	258	394
DESIGN YEAR (2034) VOLUMES, BY HOUR OF DAY	15:00	142	112	518	440	428	975	142	93	763	247	260	481
AR	16:00	147	122	455	504	402	1127	124	102	447	303	195	614
I YE	17:00	155	90	448	392	450	1113	114	95	453	210	209	561
<u>N</u>	18:00	96	109	410	316	334	693	95	98	184	141	153	297
DES	19:00	88	72	278	231	251	548	66	51	113	135	103	180
	20:00	58	73	262	175	227	543	44	49	80	125	102	231
	21:00	59	45	203	125	173	326	28	48	86	72	133	163
	22:00	42	37	207	108	146	240	26	42	52	50	78	110
	23:00	34	34	148	86	109	226	25	26	43	54	58	85
	TOTAL	1476	1561	9193	4801	6256	10057	1776	1238	6007	3096	3791	5302

*VOLUMES ARE ALL SEASONALLY ADJUSTED

CUY-90 Data Collection Summary Study Area Mainline Volumes

LO	CATION	WEST OF F 55TH ST		BETWEEN E 55TH ST	RAMPS	E 55TH ST TO E 72ND	ST	BETWEEN E 72ND ST	RAMPS	E 72ND ST TO MARTIN	LUTHER KING JR DR	BETWEEN MARTIN	RAMPS	EAST OF MARTIN	LUTHER KING JR DR
DI	RECTION	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB
GROW	/TH RATE (%)	0.085	0.085	0.031	0.031	0.031	0.031	0.031	0.031	0.063	0.063	0.063	0.063	0.126	0.126
GRO	WTH PERIOD	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	0:00	632	473	599	441	646	479	629	464	643	476	595	409	726	494
	1:00	404	308	383	297	411	319	397	305	404	314	365	279	444	316
	2:00	284	251	266	234	293	252	287	238	296	250	284	227	330	255
	3:00	261	325	245	316	264	341	261	335	274	342	250	319	286	358
	4:00	500	513	458	493	485	552	477	538	491	556	454	542	483	636
ΑY	5:00	1362	1685	1274	1637	1299	1763	1284	1723	1308	1760	1184	1720	1311	2045
DF D	6:00	2942	3969	2667	3871	2772	4286	2724	4201	2779	4316	2364	4219	2575	5160
R C	7:00	4112	5781	3781	5573	3972	6317	3913	6125	3996	6293	3575	6052	4077	6803 *
NO	8:00	3695	5221	3437	5023	3669	5574	3600	5438	3676	5566	3242	5310	3657	6278
н×	9:00	3060	3098	2852	2957	3085	3333	3025	3227	3099	3310	2642	3079	2960	3718
5, B	10:00	2575	2655	2402	2504	2646	2776	2588	2684	2668	2770	2313	2567	2677	3042
ME	11:00	2683	2605	2474	2405	2761	2683	2707	2606	2800	2694	2489	2444	2905	2876
Ľ	12:00	2648	2700	2425	2524	2779	2786	2696	2686	2777	2798	2439	2488	2930	2968
2	13:00	2820	2797	2610	2596	2990	2860	2929	2765	3017	2867	2676	2609	3194	3092
34)	14:00	3735	3580	3488	3318	3884	3679	3804	3544	3936	3658	3508	3251	4177	3783
203	15:00	4883	3618	4621	3383	5105	4151	5012	4008	5183	4144	4750	3699	5722	4230
AR (16:00	5564	4173	5348	3889	5966	4338	5863	4213	6046	4360	5639	3850	6765	4324 *
YE/	17:00	4722	3978	4503	3769	5067	4225	4972	4111	5157	4226	4702	3829	5803	4297
NG	18:00	4464	3073	4294	2929	4592	3114	4493	3018	4616	3144	4278	2824	4980	3242
DESIGN YEAR (2034) VOLUMES, BY HOUR OF DAY	19:00	2620	2074	2509	1945	2691	2059	2639	1992	2743	2076	2490	1842	3034	2125
ā	20:00	2269	1609 1365	2162	1493	2395	1573	2346	1530	2418 2164	1611	2187	1434 1278	2723	1697
	21:00 22:00	2107 1772	1365	1977 1691	1293 1076	2141	1380 1128	2093 1759	1352 1102	1811	1405 1146	1989 1664	1278	2319 1910	1485 1244
	22:00	1772	805	1691	754	1801 1415	797	1759	771	1811	809	1864	723	1910	871
	DIR. TOTAL	1390 61507	57784	57795	754 54720	63131	60764	61885	58977	63735	60892	57400	56030	67536	65340
	TOTAL	1192		<u>57795</u> 112		123		120		124				1328	
				112;		123		120	002	124	521	112,	-30	1920	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

*VOLUMES ARE ALL SEASONALLY ADJUSTED

IR-90 Safety Study E.55th Street, E. 72nd Street and Dr. Martin Luther King Blvd.

IR-90/E. 55th Street	Growth Rate per Year %
IR-90 west of E. 55th	0.085
Eastbound Exit Ramp	1.177
Westbound Entrance Ramp	1.177
Eastbound Entrance Ramp	0
Westbound Exit Ramp	0
E. 55th Street	0
IR-90/E. 72nd Street	
IR-90 West of E. 72nd	0.031
Eastbound Exit Ramp	0
Westbound Entrance Ramp	0
Eastbound Entrance Ramp	0.126
Westbound Exit Ramp	0.126
E. 72nd Street	0
<u>IR-90/MLK</u>	
IR-90 West of MLK	0.063
Eastbound Exit Ramp	0
Westbound Entrance Ramp	0
Eastbound Entrance Ramp	0.41
Westbound Exit Ramp	0.41
IR-90 East of MLK	0.126
Martin Luther King Blvd	0

Monthly Volume by Week (V2) Date Range: 05/01/2014 - 05/31/2014

Station: 576

CUY - IR - 90 : 24.330

East / West

Location: 0.12 MI E OF EAST 140TH ST

Week 2 of May, 2014

Day	Sun, M	lay 04	Mon, N	lay 05	Tue, M	ay 06	Wed, M		Thu, N		Fri, M	ay 09	Sat, M	ay 10		Hour Totals	
Hour	East	West	East	West	East	West	East	West	East	West	East	West	East	West	East	West	Both
0	1089	654	436	333	588	332	578	382	665	410	792	567	1023	692	5171	3370	8541
1	874	662	299	259	333	282	349	253	381	288	427	383	706	496	3369	2623	5992
2	806	525	232	199	262	224	271	208	299	228	369	285	620	363	2859	2032	4891
3	467	288	212	279	235	291	243	313	242	300	336	354	388	311	2123	2136	4259
4	307	215	390	541	421	570	407	538	438	569	435	567	349	332	2747	3332	6079
5	305	359	1141	1843	1138	1903	1125	1833	1117	1877	1043	1783	597	658	6466	10256	16722
6	476	901	2311	4948	2288	5020	2158	4970	2382	4988	2256	4743	1495	1365	13366	26935	40301
7	854	988	3473	7042	3504	6948	3391	6473	3472	7298	3462	6970	1698	1584	19854	37303	57157
8	1153	1260	2809	5476	2996	5738	3051	5942	2969	5676	2856	5144	1751	2391	17585	31627	49212
9	1437	1917	2417	3247	2396	3385	2468	3424	2519	3408	2391	3403	2039	2691	15667	21475	37142
10	1806	2386	2283	2512	2209	2656	2184	2744	2504	2990	2564	2903	2234	3135	15784	19326	35110
11	2134	2355	2299	2428	2424	2500	2431	2560	2564	2970	2711	2815	2689	3030	17252	18658	35910
12	2250	2509	2446	2570	2555	2607	2558	2625	2808	2773	3000	2869	3057	3233	18674	19186	37860
13	2701	2583	2560	2667	2796	2640	2753	2744	3045	2855	3293	3024	2934	3295	20082	19808	39890
14	2763	2661	3529	3042	3530	3175	3624	3215	3814	3390	4194	3395	2986	3165	24440	22043	46483
15	2861	2503	5060	3539	5307	3801	5194	3665	5804	3732	5462	3858	3249	2988	32937	24086	57023
16	2989	2576	6412	3644	6424	4019	6335	3871	6532	4076	6431	3998	3124	2916	38247	25100	63347
17	2567	2374	6811	3579	6859	4092	5360	3965	6705	4100	6331	4068	3149	2844	37782	25022	62804
18	2082	2224	3562	2794	3923	3193	4619	3070	3802	3227	3800	3366	2424	3083	24212	20957	45169
19	1973	1718	2319	1672	2449	1968	2639	2028	2787	2268	2602	2323	2189	2346	16958	14323	31281
20	1665	1539	1922	1359	2141	1649	2408	1619	2335	1777	2018	1887	1940	2037	14429	11867	26296
21	1520	1209	1569	1264	2137	1334	2045	1463	2149	1525	2025	1715	1982	1982	13427	10492	23919
22	1120	1016	1455	1082	1480	1092	1719	1136	1677	1298	1777	1512	2236	1721	11464	8857	20321
23	827	633	994	696	1232	804	1308	795	1569	946	1834	1196	2056	1389	9820	6459	16279
Direction	37026	36055	56941	57015	59627	60223	59218	59836	62579	62969	62409	63128	46915	48047	384715	387273	771988
Day	73081		113956		119850		119054		125548		125537		94962				

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
40218	3	1	13	8	5	15	0	114	29	0	0	0	0	0	1	1	0	0	0
40218	3	1	13	8	5	16	0	136	34	1	1	1	0	0	1	1	0	0	0
40218	3	1	13	8	5	17	0	150	38	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	18	0	65	16	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	19	1	67	17	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	20	1	62	16	0	1	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	21	0	42	11	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	22	0	31	8	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	23	0	20	5	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	0	0	9	2	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	1	0	4	1	0 0	0	0	0	0	0	0	0	0	0
40218 40218	3 3	1	13	8 8	6	2 3	0 0	6 10	2 3	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0
40218	3	1	13 13	о 8	6 6	3	0	9	2	0	0	0 0	0	0	0	0	0	0	0
40218	3	1	13	8	6	4 5	0	9 14	3	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	6	0	32	8	0	0	0	0	0	1	0	0	0	0
40218	3	1	13	8	6	7	0	52	13	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	8	0	43	11	0	0	0	0	0	4	0	0	0	0
40218	3	1	13	8	6	9	0	46	12	1	Õ	1	0	Õ	0	0	Õ	0 0	Ő
40218	3	1	13	8	6	10	0	54	13	1	1	1	0	0	0	0	0	0	0
40218	3	1	13	8	6	11	0	62	16	1	1	1	0	0	2	0	0	0	0
40218	3	1	13	8	6	12	0	52	13	0	1	0	1	0	3	0	0	0	0
40218	3	1	13	8	6	13	0	57	14	2	1	0	0	0	2	0	0	0	0
40218	3	1	13	8	6	14	1	90	23	0	1	0	0	0	2	0	0	0	0
40218	3	1	13	8	6	15	0	120	30	0	0	1	0	0	1	0	0	0	0
40218	3	1	13	8	6	16	0	126	31	0	0	0	0	0	0	1	0	0	0
40218	3	1	13	8	6	17	1	132	33	0	1	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	18	0	82	20	0	0	0	0	0	1	0	0	0	0
40218	3	1	13	8	6	19	3	74	18	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	20	0	50	12	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	21	0	50	13	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	22	0	36	9	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	23	0	30	7	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	0	0	23	6	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8 8	7 7	1	0	10	3	0	0	0	0	0	0	0	0	0	0
40218 40218	3 3	1	13 13	8	7	2 3	0 0	6 11	2 3	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0
40218	3	1	13	о 8	7	3	0	6	2	0	0	0	0	0	1	0	0	0	0
40218	3	1	13	8	7	4 5	0	11	3	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	6	0	27	7	0	0	0	0	0	1	1	0	0	0
40218	3	1	13	8	7	7	0	50	, 12	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	8	0	30 46	11	0	0	0	0	0	1	0	0	0	0
40218	3	1	13	8	7	9	0	-10 50	12	0	1	0	0	0	1	0	0	0	0
40218	3	1	13	8	7	10	0	44	11	0	1	1	0 0	0 0	2	0	0	0 0	0
40218	3	1	13	8	7	11	0	61	15	1	1	0	0	0	2	1	0	0	0
40218	3	1	13	8	7	12	1	61	15	2	2	1	0	0	2	0	0	0	0
40218	3	1	13	8	7	13	0	56	14	0	1	0	0	0	2	0	0	0	0
40218	3	1	13	8	7	14	0	76	19	0	1	1	0	0	2	0	0	0	0
-																			

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS 2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS 8	CLS_9	CLS 10	CLS_11	CLS 12	CLS_13
40318	1	1	13	8	8	6	0	63	16	0	0	0	0	0	2	0	0	0	0
40318	1	1	13	8	8	7	0	38	9	0	0	1	0	0	4	0	0	0	0
40318	1	1	13	8	8	8	0	40	10	1	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	9	0	34	8	2	2	0	1	0	1	0	0	0	0
40318	1	1	13	8	8	10	0	57	14	2	2	0	1	0	0	0	0	0	0
40318	1	1	13	8	8	11	0	42	11	0	1	1	1	0	0	0	0	0	0
40318	1	1	13	8	8	12	0	44	11	2	1	1	0	0	0	0	0	0	0
40318	1	1	13	8	8	13	0	55	14	2	1	1	0	0	1	0	0	0	0
40318	1	1	13	8	8	14	0	59	15	1	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	15	0	78	19	1	1	1	0	0	0	0	0	0	0
40318	1	1	13	8	8	16	0	98	24	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	17	0	86	22	0	0	0	0	0	1	0	0	0	0
40318	1	1	13	8	8	18	0	70	17	0	0	0	0	0	1	0	0	0	0
40318	1	1	13	8	8	19	0	64	16	0	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	20	0	50	13	0	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	21	0	39	10	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	22	1	38	9	0	0	0	0	0	1	0	0	0	0
40318	1	1	13	8	8	23	0	39	10	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	0	0	21	5	1	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	1	0	12	3	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	2	0	10	2	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	3	0	6	2	0	0	0	0	0	0	0	0	0	0
40318	1	1 1	13	8	9	4 5	0	8	2	0	1	0	0 0	0	0	0	0	0	0
40318 40318	1 5	1	13 13	8 8	9 8	5 6	0 0	11 24	3 0	0 0	0	0 0	0	0 0	1	0 0	0 0	0 0	0 0
40318	5	1	13	о 8	о 8	6 7	0	24 36	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	8	0	30	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	9	0	16	3	0	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	10	0	18	2	0	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	11	0	22	2	1	1	1	0	0	1	0	0	0	0
40318	5	1	13	8	8	12	0	14	5	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	13	0 0	26	3	1	1	1	0 0	Õ	0	Ő	0	0	0
40318	5	1	13	8	8	14	0	32	4	0	0	0	0	Õ	1	0	0	0	0 0
40318	5	1	13	8	8	15	1	31	6	0	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	16	0	35	6	1	1	0	0 0	0	0	0	0 0	0	0
40318	5	1	13	8	8	17	0	22	9	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	18	0	25	3	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	19	0	18	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	20	0	18	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	21	0	20	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	22	0	16	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	23	0	23	1	0	0	0	0	0	1	0	0	0	0
40318	5	1	13	8	9	0	0	12	1	2	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	9	1	0	1	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	9	2	0	6	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	9	3	0	4	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	9	4	0	7	2	2	1	0	0	0	1	0	0	0	0
40318	5	1	13	8	9	5	0	11	3	0	1	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	6	0	30	8	1	0	0	0	0	1	0	0	0	0

40318	5	2	13	8	8	7	0	43	11	1	0	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	8	1	38	10	0	1	1	1	0	1	0	0	0	0
40318	5	2	13	8	8	9	0	25	6	0	1	0	0	0	0	0	0	0	0
40318	5	2	13	8	8	10	0	25	6	0	0	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	11	0	33	9	0	0	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	12	0	23	6	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	8	13	0	38	10	0	0	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	14	0	45	11	1	0	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	15	1	46	12	1	1	1	0	0	1	0	0	0	0
40318	5	2	13	8	8	16	2	51	13	2	1	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	17	0	37	10	1	0	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	18	0	33	9	0	0	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	19	0	22	6	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	8	20	0	22	6	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	8	21	0	25	6	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	8	22	0	20	5	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	8	23	0	30	8	0	0	0	0	0	1	0	0	0	0
40318	5	2	13	8	9	0	0	20	5	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	9	1	0	2	0	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	9	2	0	7	2	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	9	3	0	5	1	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	9	4	0	16	4	0	0	0	0	0	0	0	0	0	0
40318	5	2	13	8	9	5	0	20	5	1	0	1	0	0	0	0	0	0	0

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
40918	5	1	13	7	25	9	1	57	14	0	1	0	0	0	2	0	0	0	0
40918	5	1	13	7	25	10	2	54	13	2	1	0	0	0	3	0	0	0	0
40918	5	1	13	7	25	11	1	82	20	3	1	0	0	0	5	1	0	0	0
40918	5	1	13	7	25	12	0	74	19	1	1	1	0	0	2	0	0	0	0
40918	5	1	13	7	25	13	0	78	20	1	1	1	1	0	1	1	0	0	0
40918	5	1	13	7	25	14	2	81	20	2	1	0	0	0	0	0	0	0	0
40918	5	1	13	7	25	15	1	84	21	1	0	0	0	0	2	0	0	0	0
40918	5	1	13	7	25	16	1	98	25	2	2	1	0	0	1	0	0	0	0
40918	5	1	13	7	25	17	0	86	21	3	1	1	1	0	0	0	0	0	0
40918	5	1	13	7	25	18	3	84	21	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	25	19	0	79	20	2	1	0	0	0	3	0	0	0	0
40918	5	1	13	7	25	20	0	73	18	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	25	21	1	58	15	Õ	1	0	1	0	1	0	0	0	0
40918	5	1	13	7	25	22	0	43	11	õ	0	1	0	0	0	0	0	0	Õ
40918	5	1	13	7	25	23	1	30	7	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	26	0	0	11	3	0	0	0	0	0	0	0	0	0	0
40918 40918	5	1	13	7	20	1	0	10	3	0	0	0	0	0	0	0	0	0	0
40918 40918	5	1	13	7	26 26	2	0	6	1	0	0	0	0	0	0	0	0	0	0
40918 40918	5	1	13	7	26	2	0	7	2	0	0	0	0	0	0	0	0	0	0
40918 40918	5	1	13	7	26 26	4	0	13	2	0	0	0	0	0	0	0	0	0	0
10918	5 5	1		7			0		8	0	-	-	0	-	-	-	0	-	0
	-	•	13		26	5	-	30		-	0	0	-	0	0	1	-	0	
0918	5	1	13	7	26	6	1	62	16	0	0	0	0	0	1	0	0	0	0
0918	5	1	13	7	26	7	0	106	27	0	0	0	0	0	2	0	0	0	0
0918	5	1	13	7	26	8	0	79	20	2	1	1	0	0	2	0	0	0	0
0918	5	1	13	7	26	9	1	51	13	2	1	0	0	0	1	0	0	0	0
40918	1	1	13	7	25	9	1	47	12	3	1	1	0	0	2	0	0	0	0
10918	1	1	13	7	25	10	1	42	11	0	1	1	0	0	2	0	0	0	0
0918	1	1	13	7	25	11	1	54	14	3	1	2	1	0	4	0	0	0	0
0918	1	1	13	7	25	12	2	74	18	5	5	1	0	0	4	0	0	0	0
0918	1	1	13	7	25	13	1	77	19	2	0	1	0	0	2	0	0	0	0
0918	1	1	13	7	25	14	0	104	26	5	1	3	0	0	6	0	0	0	0
0918	1	1	13	7	25	15	3	91	23	0	1	0	0	0	4	0	0	0	0
0918	1	1	13	7	25	16	2	121	30	2	1	1	0	0	1	0	0	0	0
0918	1	1	13	7	25	17	1	130	33	0	1	1	0	0	0	0	0	0	0
0918	1	1	13	7	25	18	2	86	21	0	1	0	0	0	2	0	0	0	0
0918	1	1	13	7	25	19	1	106	26	1	1	0	0	0	2	0	0	0	0
0918	1	1	13	7	25	20	2	101	25	0	0	1	0	0	1	0	0	0	0
0918	1	1	13	7	25	21	1	66	16	0	0	0	0	0	0	0	0	0	0
0918	1	1	13	7	25	22	0	68	17	0	1	1	0	0	0	0	0	0	0
0918	1	1	13	7	25	23	1	30	7	0	0	0	0	0	0	0	0	0	0
0918	1	1	13	7	26	0	0	15	4	0	1	0	0	0	0	0	0	0	0
0918	1	1	13	7	26	1	0	13	3	õ	0	Ő	0	Ő	Ő	Ő	0	Ő	0 0
0918	1	1	13	7	26	2	0	6	1	õ	0 0	Ő	0	0	Ő	0	0	0	0 0
0918	1	1	13	7	26	3	0	10	2	0	0	0	0	0	0	0	0	0	0
0918	1	1	13	7	26	4	0	6	1	0	0	0	0	0	0	0	0	0	0
10918 10918	1	1	13	7	26	4 5	0	17	4	0	0	0	0	0	0	0	0	0	0
10918	1	1	13	7	26 26	5 6	0	37	4 9	1	0	1	0	0	1	0	0	0	0
	1	1 4		7		-	-		9	4	U 4	4	U 4	0		0	0	0	0
0918	•	1	13		26	7	1	37	-	1	1	1	1	-	1	-	-	-	-
10918	1	1	13	7	26	8	0	34	9	4	1	4	0	0	3	0	0	0	0
0918	1	1	13	7	26	9	0	60	15	0	1	0	0	0	0	0	0	0	0

STA 41018	DIR 7	LANE 1	YEAR 13	MNTH 8	DATE 5	HOUR 15	CLS_1 0	CLS_2 100	CLS_3 25	CLS_4 2	CLS_5 1	CLS_6 0	CLS_7 0	CLS_8 0	CLS_9	CLS_10 0	CLS_11 0	CLS_12 0	CLS_13
41018	7											-	-	-	1	0	-	-	0
41018	7	1	13 13	8 8	5 5	16 17	1	100 88	25 22	0 1	1	1	0	0 0	0	0	0 0	0 0	0
41018	7	1	13	8	5	18	0	00 74	18	0	1	0	0	0	1	0	0	0	0
41018	7	1	13	8	5	18	0	66	16	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	5	20	1	65	16	0	1	0	0	0	1	0	0	0	0
41018	7	1	13	8	5	20	0	38	10	0	0	0	0	0	1	0	0	0	0
41018	7	1	13	8	5	22	0	32	8	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	5	22	0	32	8	0	0	0	0	0	0	0	0	0	0
41018	7		13	8	6	23	0	8	2	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	1	0	6	2	0	0	0	0	0	0	0	0	0	0
		-			-		-		-	0		•	0			0			0
41018	7	1	13	8	6	2	0	10	2	-	0	0	-	0	0	-	0	0	v
41018	7	1	13	8	6	3	0	4	1	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	4	0	13	3	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	5	0	22	6	0	0	0	0	0	1	0	0	0	0
41018	7	1	13	8	6	6	1	74	19	0	0	1	0	0	2	0	0	0	0
41018	7	1	13	8	6	7	0	110	27	1	1	1	0	0	1	0	0	0	0
41018	7	1	13	8	6	8	0	79	20	0	0	1	0	0	1	0	0	0	0
41018	7	1	13	8	6	9	0	50	13	2	2	0	0	0	1	0	0	0	0
41018	7	1	13	8	6	10	0	57	14	0	0	1	0	0	3	0	0	0	0
41018	7	1	13	8	6	11	0	59	15	1	1	1	0	0	1	0	0	0	0
41018	7	1	13	8	6	12	0	79	20	0	1	1	0	0	2	0	0	0	0
41018	7	1	13	8	6	13	0	70	17	2	1	0	0	0	2	0	0	0	0
41018	7	1	13	8	6	14	0	78	19	0	0	0	0	0	2	0	0	0	0
41018	7	1	13	8	6	15	1	90	22	0	0	1	0	0	5	1	0	0	0
41018	7	1	13	8	6	16	1	99	25	2	2	1	0	0	1	0	0	0	0
41018	7	1	13	8	6	17	0	78	19	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	18	1	90	23	1	1	0	0	0	1	0	0	0	0
41018	7	1	13	8	6	19	0	61	15	0	1	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	20	1	62	15	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	21	2	36	9	0	0	0	0	0	1	0	0	0	0
41018	7	1	13	8	6	22	0	32	8	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	23	0	29	7	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	0	0	17	4	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	1	0	6	2	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	2	0	6	1	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	3	0	10	2	0	0	0	0	0	1	0	0	0	0
41018	7	1	13	8	7	4	0	14	3	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	5	0	26	7	0	0	0	0	0	0	1	0	0	0
41018	7	1	13	8	7	6	0	76	19	0	0	0	0	0	2	0	0	0	0
41018	7	1	13	8	7	7	0	114	29	0	1	0	0	0	4	0	0	0	0
41018	7	1	13	8	7	8	0	78	20	2	1	1	0	0	3	0	0	0	0
41018	7	1	13	8	7	9	0	56	14	2	3	0	0	0	2	0	0	0	0
41018	7	1	13	8	7	10	1	54	14	2	1	1	0	0	2	1	0	0	0
41018	7	1	13	8	7	11	0	59	15	2	3	1	0	0	1	0	0	0	0
41018	7	1	13	8	7	12	0	73	18	1	1	1	0	0	0	0	0	0	0
41018	7	1	13	8	7	13	0	60	15	1	1	1	0	0	1	0	0	0	0
41018	7	1	13	8	7	14	0	74	19	0	1	0	0	0	5	0	0	0	0

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/05/11	10:00	Axle	1	1	291	58	1	9	11	0	5	22	3	0	0	1
10/05/11	11:00	Axle	1	1	273	62	1	5	17	1	4	27	5	0	0	0
10/05/11	12:00	Axle	1	2	292	74	0	11	16	1	7	35	4	0	1	0
10/05/11	13:00	Axle	1	2	311	60	0	14	23	1	3	28	3	0	0	1
10/05/11	14:00	Axle	1	3	433	69	0	8	12	1	3	35	2	0	1	0
10/05/11	15:00	Axle	1	4	529	80	0	18	9	2	3	34	4	0	2	0
10/05/11	16:00	Axle	1	0	541	62	0	9	10	0	6	19	3	0	1	2
10/05/11	17:00	Axle	1	2	536	52	0	4	3	0	3	31	0	0	0	0
10/05/11	18:00	Axle	1	2	356	35	1	1	5	0	3	8	0	1	0	1
10/05/11	19:00	Axle	1	2	286	24	0	0	1	0	5	6	0	0	0	0
10/05/11	20:00	Axle	1	1	221	22	0	2	2	0	3	5	0	0	0	0
10/05/11	21:00	Axle	1	5	184	12	0	0	0	0	2	1	0	0	0	0
10/05/11	22:00	Axle	1	0	137	19	0	0	0	0	1	3	0	0	0	0
10/05/11	23:00	Axle	1	1	107	6	0	0	0	0	1	3	0	0	0	0
10/06/11	00:00	Axle	1	0	91	8	0	0	0	0	0	1	0	0	0	0
10/06/11	01:00	Axle	1	0	67	7	0	0	0	0	1	0	0	0	0	0
10/06/11	02:00	Axle	1	0	30	5	0	1	0	0	1	0	0	0	0	0
10/06/11	03:00	Axle	1	1	35	7	0	0	1	0	0	1	0	0	0	0
10/06/11	04:00	Axle	1	0	68	9	0	1	0	0	0	0	0	0	0	0
10/06/11	05:00	Axle	1	1	158	14	Õ	2	4	Õ	0 0	4	0 0	0 0	0 0	0 0
10/06/11	06:00	Axle	1	2	290	39	0	5	4	0	4	6	0	0	2	1
10/06/11	07:00	Axle	1	0	497	42	2	6	7	0	6	14	3	0	2	1
10/06/11	08:00	Axle	1	2	432	51	2	17	2	Ő	3	27	4	Ő	0	0
10/06/11	09:00	Axle	1	1	298	65	0	15	12	1	5	21	2	0	1	1
10/06/11	10:00	Axle	1	0	250	57	2	15	11	0	8	31	4	0	0	0
10/06/11	11:00	Axle	1	0	255	58	0	8	16	1	5	23	4	Ő	1	0
10/06/11	12:00	Axle	1	1	304	73	1	8	14	0	3	26	5	0	0	0
10/06/11	13:00	Axle	1	0	288	81	4	10	25	0 0	5	33	1	0	0 0	0
10/06/11	14:00	Axle	1	4	464	86	1	11	22	Õ	7	31	4	Ő	Õ	1
10/06/11	15:00	Axle	1	2	529	82	0	13	13	0	3	29	2	0	0	0
10/06/11	16:00	Axle	1	2	534	70	Ő	5	.0	1	4	26	0	0	0	1
10/06/11	17:00	Axle	1	0	512	63	Õ	5	7	0	4	18	0 0	Ő	0	0
10/06/11	18:00	Axle	1	1	330	26	Ő	2	6	0 0	5	14	0 0	0	0 0	0
10/06/11	19:00	Axle	1	3	261	29	1	1	3	Õ	3	8	0	Ő	0	0 0
10/06/11	20:00	Axle	1	0	190	16	0	1	1	0	1	3	0	0	0	0
10/06/11	21:00	Axle	1	1	169	13	0 0	0	0	0 0	2	0	0 0	0	0	0
10/06/11	22:00	Axle	1	4	168	14	Õ	0 0	0	Õ	1	1	0 0	0 0	0 0	0 0
10/06/11	23:00	Axle	1	2	117	10	0	1	1	0	0	0	0	0	0	0
10/07/11	00:00	Axle	1	1	68	10	Ő	0	0	0 0	0 0	2	0 0	0 0	0	0
10/07/11	01:00	Axle	1	2	61	7	Ő	Ő	0 0	Õ	Ő	1	0	Õ	Ő	0 0
10/07/11	02:00	Axle	1	1	52	1	Ő	Ő	0	0 0	1	0	0 0	0	0	0
10/07/11	02:00	Axle	1	0	44	5	0	1	2	0	0	0	0	0	0	0
10/07/11	03:00	Axle	1	0	59	6	0	2	0	0	0	0	0	0	0	0
10/07/11	05:00	Axle	1	0	167	14	0	0	3	0	1	6	0	0	0	0
10/07/11	06:00	Axle	1	4	286	29	0	7	5	0	3	5	1	0	0	0
10/07/11	07:00	Axle	1	1	460	41	2	10	4	1	2	14	0	0	0	1
10/07/11	07:00	Axle	1	0	430	52	3	13	8	0	2	26	1	0	0	1
10/07/11	00.00	AVIG		0	430	52	5	15	0	U	2	20	1	0	0	I

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/05/11	11:00	Axle	1	6	271	69	2	6	6	5	6	27	4	0	0	0
10/05/11	12:00	Axle	1	6	268	69	1	8	14	5	2	27	8	0	1	0
10/05/11	13:00	Axle	1	11	350	65	4	6	15	4	2	20	5	0	0	0
10/05/11	14:00	Axle	1	11	395	113	0	9	10	6	3	13	4	0	1	0
10/05/11	15:00	Axle	1	9	433	95	0	9	10	3	2	10	0	1	0	0
10/05/11	16:00	Axle	1	12	543	98	0	6	14	0	2	14	1	0	1	1
10/05/11	17:00	Axle	1	14	553	77	0	4	14	0	5	3	1	0	0	1
10/05/11	18:00	Axle	1	7	402	56	0	1	2	0	1	4	1	0	0	1
10/05/11	19:00	Axle	1	9	295	47	0	0	7	1	0	2	0	1	0	0
10/05/11	20:00	Axle	1	8	266	28	0	1	1	0	1	2	0	0	0	0
10/05/11	21:00	Axle	1	8	266	25	0	1	3	0	1	0	0	0	0	0
10/05/11	22:00	Axle	1	3	167	23	0	1	3	0	0	0	0	0	0	0
10/05/11	23:00	Axle	1	3	146	14	0	0	3	1	0	0	0	0	0	0
10/06/11	00:00	Axle	1	2	109	15	0	0	0	0	0	0	0	0	0	0
10/06/11	01:00	Axle	1	2	56	5	0	1	0	0	0	0	0	0	0	0
10/06/11	02:00	Axle	1	3	55	4	0	1	0	0	0	0	0	0	0	0
10/06/11	03:00	Axle	1	0	26	3	0	1	1	0	1	0	0	0	0	0
10/06/11	04:00	Axle	1	4	55	12	0	0	2	0	1	1	0	0	0	0
10/06/11	05:00	Axle	1	6	195	27	0	0	5	0	0	2	0	0	0	0
10/06/11	06:00	Axle	1	7	314	66	1	11	8	3	0	1	0	0	0	0
10/06/11	07:00	Axle	1	7	514	70	1	11	18	4	3	10	1	0	2	0
10/06/11	08:00	Axle	1	10	446	83	1	9	8	0	5	13	1	1	1	1
10/06/11	09:00	Axle	1	6	335	93	2	6	11	4	2	15	0	0	2	0
10/06/11	10:00	Axle	1	11	253	92	1	12	9	1	4	14	2	0	0	0
10/06/11	11:00	Axle	1	10	277	90	2	9	13	6	1	16	2	0	1	0
10/06/11	12:00	Axle	1	8	260	83	2	7	10	6	4	12	3	1	1	0
10/06/11	13:00	Axle	1	8	285	92	0	11	9	3	3	16	1	1	0	0
10/06/11	14:00	Axle	1	15	382	102	5	8	16	1	4	16	4	1	1	0
10/06/11	15:00	Axle	1	13	450	94	2	9	16	2	3	15	3	0	0	0
10/06/11	16:00	Axle	1	12	486	73	1	4	15	3	2	5	1	2	0	0
10/06/11	17:00	Axle	1	10	518	64	0	4	8	0	1	5	1	0	0	0
10/06/11	18:00	Axle	1	7	403	41	0	2	6	0	1	4	0	1	0	0
10/06/11	19:00	Axle	1	7	328	38	0	3	4	0	0	1	0	0	0	0
10/06/11	20:00	Axle	1	10	268	43	0	1	1	0	3	2	0	0	0	0
10/06/11	21:00	Axle	1	8	243	20	0	0	3	0	0	0	0	0	0	0
10/06/11	22:00	Axle	1	2	184	23	0	0	1	0	0	1	0	0	0	1
10/06/11	23:00	Axle	1	2	150	21	0	1	2	0	0	1	0	0	1	1
10/07/11	00:00	Axle	1	4	108	15	0	2	2	0	1	0	0	0	0	0
10/07/11	01:00	Axle	1	2	76	9	0	0	3	0	0	0	1	0	0	0
10/07/11	02:00	Axle	1	1	45	0	0	1	1	0	0	1	0	0	0	0
10/07/11	03:00	Axle	1	3	35	5	0	0	1	0	1	1	0	0	0	0
10/07/11	04:00	Axle	1	4	58	13	0	1	2	0	0	4	1	0	0	0
10/07/11	05:00	Axle	1	5	182	26	0	2	4	0	1	0	0	0	0	0
10/07/11	06:00	Axle	1	10	310	50	0	14	11	0	2	2	0	0	0	1
10/07/11	07:00	Axle	1	9	508	53	2	12	15	3	5	12	1	0	0	0
10/07/11	08:00	Axle	1	9	416	102	1	11	11	1	6	16	3	0 0	0	0
10/07/11	09:00	Axle	1	8	261	84	1	9	9	3	4	.0	2	0 0	0	4
10/07/11	10:00	Axle	1	7	280	108	2	8	10	5	4	14	1	1	1	3
10/07/11	11:00	Axle	1	9	281	76	4	6	9	3	8	20	0	1	0	2

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/05/11	14:00	Axle	1	1	113	28	0	4	2	1	2	3	3	0	0	0
10/05/11	15:00	Axle	1	1	126	28	0	7	1	0	1	2	1	0	0	0
10/05/11	16:00	Axle	1	2	131	23	0	3	2	1	0	3	2	0	0	1
10/05/11	17:00	Axle	1	2	139	16	0	0	1	0	0	1	0	0	0	0
10/05/11	18:00	Axle	1	1	116	13	0	0	0	0	0	1	0	0	0	0
10/05/11	19:00	Axle	1	0	100	12	0	2	0	0	1	0	0	0	0	1
10/05/11	20:00	Axle	1	0	86	8	0	1	0	0	2	0	0	0	0	0
10/05/11	21:00	Axle	1	1	72	6	0	0	0	0	0	0	0	0	0	0
10/05/11	22:00	Axle	1	0	64	4	0	0	0	0	0	0	0	0	0	0
10/05/11	23:00	Axle	1	1	66	6	0	0	0	0	0	0	0	0	0	0
10/06/11	00:00	Axle	1	0	31	1	0	0	0	0	0	0	0	0	0	0
10/06/11	01:00	Axle	1	0	17	1	0	0	0	0	0	0	0	0	0	0
10/06/11	02:00	Axle	1	0	14	2	0	0	0	0	0	0	0	0	0	0
10/06/11	03:00	Axle	1	1	7	1	0	0	0	0	0	0	0	0	0	0
10/06/11	04:00	Axle	1	0	3	3	0	0	0	0	0	0	0	0	0	0
10/06/11	05:00	Axle	1	0	19	9	0	0	0	0	0	0	0	0	0	0
10/06/11	06:00	Axle	1	2	52	13	0	6	1	0	1	0	0	0	0	1
10/06/11	07:00	Axle	1	0	93	25	Õ	1	3	Ő	0	6	1	0 0	0 0	0
10/06/11	08:00	Axle	1	0 0	90	17	Ő	3	2	0 0	0 0	5	1	1	0	0
10/06/11	09:00	Axle	1	Õ	61	17	Õ	3	0	Ő	0 0	6	1	3	0	0
10/06/11	10:00	Axle	1	0 0	79	19	Ő	1	0 0	2	3	4	1	0	1	0
10/06/11	11:00	Axle	1	0 0	84	24	Ő	2	3	0	1	5	3	1	1	0
10/06/11	12:00	Axle	1	Õ	62	18	Ő	0	0	1	1	6	3	0	0	0 0
10/06/11	13:00	Axle	1	0 0	75	10	0 0	5	1	1	0	6	1	0	0 0	0
10/06/11	14:00	Axle	1	0	100	20	0	7	1	1	1	4	1	Ő	0 0	1
10/06/11	15:00	Axle	1	1	108	33	1	12	1	1	1	3	0	0	0	1
10/06/11	16:00	Axle	1	1	150	18	0	4	1	0	1	2	0 0	Ő	0 0	0
10/06/11	17:00	Axle	1	0	145	18	0	0	0	0	0	3	0 0	Ő	0	1
10/06/11	18:00	Axle	1	0	120	12	0	0	0	0	0 0	0	0	0	0	0
10/06/11	19:00	Axle	1	1	98	9	0	2	1	0	1	1	0 0	Ő	0	0
10/06/11	20:00	Axle	1	0	89	7	0	0	0	0	0	0	0 0	Ő	0 0	1
10/06/11	21:00	Axle	1	0	76	, 9	0	1	0	0	0 0	Ő	0	0	0	0
10/06/11	22:00	Axle	1	0	66	3	0	0	0	0	1	1	0	0	0	1
10/06/11	23:00	Axle	1	2	60	3	0	0	0	0	0	3	0	0	0	1
10/07/11	00:00	Axle	1	1	40	3	0	1	0	0	0	0	0	0	0	1
10/07/11	01:00	Axle	1	0	20	1	0	0	0	0	0	1	0	0	0	0
10/07/11	02:00	Axle	1	0	20	2	0	0	0	0	0	0	0	0	0	0
10/07/11	02:00	Axle	1	0	15	1	0	1	0	0	0	0	0	0	0	0
10/07/11	03:00	Axle	1	0	13	0	0	0	0	0	0	0	0	0	0	0
10/07/11	04.00	Axle	1	1	14	2	0	0	1	0	0	0	0	0	0	0
10/07/11	05:00	Axle	1	2	57	16	0	4	2	1	0	0	1	0	0	0
10/07/11	08.00	Axie	1	2	57 77	26	0	4 2	2	0	1	3	1	0	0	0
10/07/11	07:00		1	0	65	26 15	0	2	0 2	1	1	3	2	0	1	0
10/07/11	08:00	Axle	1	0		15	U 1	3	2	1	1	3	2	0	0	0
10/07/11	10:00	Axle Axle	1	0	66 97	15	0	2	2	1	0	3	2	0	0	0
			1	0 1	-		-	3	2	2	1	-		-	-	-
10/07/11	11:00	Axle	-		68	22	0	•			•	3	2	0	0	0
10/07/11	12:00	Axle	1	2	92	21	0	5	1	0	1	4	2	0	0	0

	STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
6	3918	7	1	13	8	5	14	2	310	78	2	1	1	0	0	8	0	0	0	0
6	3918	7	1	13	8	5	15	0	316	79	1	0	1	1	0	11	1	0	0	0
6	3918	7	1	13	8	5	16	0	346	87	0	1	1	0	0	8	0	0	0	0
6	3918	7	1	13	8	5	17	0	389	97	3	0	3	1	0	9	0	0	0	0
6	3918	7	1	13	8	5	18	1	326	82	2	1	1	0	0	4	0	0	0	0
6	3918	7	1	13	8	5	19	2	265	66	0	1	0	0	0	1	0	0	0	0
	3918	7	1	13	8	5	20	1	215	54	0	0	0	0	0	2	0	0	0	0
6	3918	7	1	13	8	5	21	2	210	52	0	0	0	0	0	2	0	0	0	0
	3918	7	1	13	8	5	22	1	149	37	0	0	0	0	0	1	0	0	0	0
	3918	7	1	13	8	5	23	0	127	32	0	0	0	0	0	0	0	0	0	0
	3918	7	1	13	8	6	0	Õ	71	18	Õ	1	0 0	0 0	0 0	0	0	0	0 0	0
	3918	7	1	13	8	6	1	Õ	38	10	Ő	0	Ő	0	0	0 0	0	Õ	Õ	0
	3918	7	1	13	8	6	2	2	22	5	0	0	0	0	0	0	0	0	0	0
_	3918	7	1	13	8	6	3	0	26	6	0	1	0	0	0	0	0	0	0	0
_	3918	7	1	13	8	6	4	0	25	6	0	0	0	0	0	0	0	0	0	0
_		7	1	13	8	-		0	-	-	0	1	1	0	-	0	0	0	-	0
_	3918		1			6	5		49	12	0	1	=	-	0	-	-	-	0	-
	3918	7	•	13	8	6	6	0	157	39	•		1	0	0	3	0	0	0	0
	3918	7	1	13	8	6	7	0	290	72	0	0	0	0	0	10	0	0	0	0
	3918	7	1	13	8	6	8	1	281	70	2	1	1	0	0	2	0	0	0	0
_	3918	7	1	13	8	6	9	0	243	61	2	1	1	0	0	5	0	0	0	0
_	3918	7	1	13	8	6	10	0	228	57	2	1	1	0	0	4	0	0	0	0
	3918	7	1	13	8	6	11	1	242	61	2	1	1	0	0	5	0	0	0	0
	3918	7	1	13	8	6	12	2	260	65	2	2	0	0	0	4	0	0	0	0
6	3918	7	1	13	8	6	13	1	267	67	3	1	1	0	0	10	0	0	0	0
6	3918	7	1	13	8	6	14	1	297	74	1	1	1	0	0	5	0	0	0	0
6	3918	7	1	13	8	6	15	0	346	86	0	1	1	0	0	6	1	0	0	0
6	3918	7	1	13	8	6	16	1	366	91	1	1	1	0	0	8	0	0	0	0
6	3918	7	1	13	8	6	17	0	402	101	1	1	1	0	0	5	0	0	0	0
6	3918	7	1	13	8	6	18	3	346	86	0	0	1	0	0	3	0	0	0	0
6	3918	7	1	13	8	6	19	3	300	75	0	1	0	0	0	0	0	0	0	0
_	3918	7	1	13	8	6	20	1	239	60	0	1	0	0	0	2	0	0	0	0
_	3918	7	1	13	8	6	21	1	242	60	0	0	0	1	0	2	0	0	0	0
_	3918	7	1	13	8	6	22	0	162	41	0	0	0	0	0	2	0	0	0	0
_	3918	7	1	13	8	6	23	3	142	35	0	1	0	0	0	0	0	0	0	0
_	3918	7	1	13	8	7	0	0	86	22	1	1	Ő	Ő	õ	0 0	0	Õ	õ	0
	3918	7	1	13	8	7	1	0	38	9	0	0	0	0	0	0	0	0	0	0
	3918	7	1	13	8	7	2	1	31	8	0	0	0	0	0	0	0	0	0	0
	3918	7	1	13	8	7	3	0	20	5	0	0	0	0	0	0	0	0	0	0
_	3918 3918	7	1	13	8	7	4	0	20 19	5	0	0	0	0	0	0	0	0	0	0
_	3918 3918	7	1	13	о 8	7	4 5	1	19 52	5 13	2	1	1	0	0	0	0	0	0	0
			1		-	7		•				•	•	-	-	Ũ	v	-	-	v
_	3918	7	-	13	8		6	1	153	38	2	1	1	0	0	0	0	0	0	0
_	3918	7	1	13	8	7	7	1	292	73	0	1	0	0	0	4	0	0	0	0
	3918	7	1	13	8	7	8	1	259	65	2	1	1	1	0	3	0	0	0	0
	3918	7	1	13	8	7	9	0	230	58	3	3	0	1	0	4	0	0	0	0
	3918	7	1	13	8	7	10	0	226	57	0	1	1	2	0	5	0	0	0	0
	3918	7	1	13	8	7	11	0	224	56	1	1	1	0	0	4	0	0	0	0
	3918	7	1	13	8	7	12	1	262	65	4	1	1	1	0	5	0	0	0	0
6	3918	7	1	13	8	7	13	0	274	68	2	1	0	1	0	6	2	0	0	0

1011/11 1000 Ade 1 0 274 56 0 5 6 1 3 11 1 0 1 0 1011/11 1100 Ade 1 2 221 61 0 4 5 0 1 10 0 <t< th=""><th>Date</th><th>Time</th><th>Туре</th><th>Lane</th><th>Bin 1</th><th>Bin 2</th><th>Bin 3</th><th>Bin 4</th><th>Bin 5</th><th>Bin 6</th><th>Bin 7</th><th>Bin 8</th><th>Bin 9</th><th>Bin 10</th><th>Bin 11</th><th>Bin 12</th><th>Bin 13</th></t<>	Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/11/11 12.00 Axle 1 2 22 1 0 1 10 0 0 0 0 10/11/11 14.00 Axle 1 1 379 70 0 26 7 8 0 0 1 0 2 10/11/11 15.00 Axle 1 0 373 60 0 6 12 0 5 13 2 0 1 4 0 0 0 1 10/11/11 18:00 Axle 1 0 268 41 0 2 0 0 1 4 0	10/11/11	10:00	Axle	1	0	274	56	0	5	6	1	3	11	1	0	1	0
1101111 13.00 Axia 1 0 315 57 0 15 4 0 7 8 0 0 1 1 1 2 1011111 15.00 Axia 1 2 421 56 0 2 0 6 13 1 0 5 4 1011111 15.00 Axia 1 0 400 57 0 2 2 0 2 8 0 1 3 0 1011111 17.00 Axia 1 1 264 29 0 1 0 0 1 4 0 <td>10/11/11</td> <td>11:00</td> <td>Axle</td> <td>1</td> <td>0</td> <td>291</td> <td>51</td> <td>0</td> <td>7</td> <td>6</td> <td>0</td> <td>3</td> <td>5</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td>	10/11/11	11:00	Axle	1	0	291	51	0	7	6	0	3	5	0	0	1	0
1011/11 14:00 Axie 1 1 379 70 0 26 7 0 6 10 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10/11/11	12:00	Axle	1	2	321	61	0	4	5	0	1	10	0	0	0	0
10/11/11 15.00 Axie 1 2 421 56 0 2 0 6 13 1 0 5 4 10/11/11 17.00 Axie 1 0 400 57 0 2 2 0 2 8 0 1 3 0 10/11/11 19.00 Axie 1 1 260 0 1 4 0 <td>10/11/11</td> <td>13:00</td> <td>Axle</td> <td>1</td> <td>0</td> <td>315</td> <td>57</td> <td>0</td> <td>15</td> <td>4</td> <td>0</td> <td>7</td> <td>8</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td>	10/11/11	13:00	Axle	1	0	315	57	0	15	4	0	7	8	0	0	1	0
101111 16:00 Axle 1 0 373 60 0 6 2 0 5 13 2 0 1 1 1011111 17:00 Axle 1 0 269 41 0 2 0 0 1 4 0 0 0 0 1011111 19:00 Axle 1 1 207 20 0	10/11/11	14:00	Axle	1	1	379	70	0	26	7	0	6	10	1	1	1	2
101111 17.00 Axle 1 0 400 57 0 2 2 0 1 4 0 0 0 1011111 19.00 Axle 1 1 289 41 0	10/11/11	15:00	Axle	1	2	421	56	0	2	10	0	6	13	1	0	5	4
1011/11 18:00 Axie 1 0 2 0 0 1 4 0 0 0 0 1011/111 29:00 Axie 1 1 207 20 0 0 0 0 3 0 0 0 0 1011/111 20:00 Axie 1 0 190 14 0	10/11/11	16:00	Axle	1	0	373	60	0	6	2	0	5	13	2	0	1	1
101111 19:00 Ade 1 1 247 29 0 1 0 0 1 4 0	10/11/11	17:00	Axle	1	0	400	57	0	2	2	0	2	8	0	1	3	0
101111 20:00 Ade 1 1 207 20 0 0 0 0 3 0 0 1 0 1011111 21:00 Ade 1 0 190 14 0	10/11/11	18:00	Axle	1	0	269	41	0	2	0	0	1	4	0	0	0	0
101111 20:00 Ade 1 1 207 20 0 0 0 0 3 0 0 1 0 1011111 21:00 Ade 1 0 190 14 0	10/11/11	19:00	Axle	1	1	284	29	0	1	0	0	1	4	0	0	0	0
1011/11 22:00 Axie 1 0 123 7 0 0 0 0 1 0 0 0 0 1011/11 23:00 Axie 1 2 84 9 0 0 0 1 0	10/11/11	20:00	Axle	1	1	207	20	0	0	0	0	0	3	0	0	1	0
1011/11 23.00 Avie 1 0 123 7 0 0 0 0 1 0	10/11/11	21:00	Axle	1	1	153	13	0	0	0	0	0	2	0	0	0	0
1011/11 23.00 Avie 1 0 123 7 0 0 0 0 1 0	10/11/11	22:00	Axle	1	0	190	14	0	0	0	0	0	1	0	0	0	0
101/2/11 01/00 Axie 1 0 49 4 0 0 0 0 1 0	10/11/11	23:00	Axle	1	0	123	7	0	0	0	0	0	1	0	0	0	0
10/12/11 01:00 Axie 1 0 49 4 0 0 0 0 1 0	10/12/11	00:00	Axle	1	2	84	9	0	0	0	0	1	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10/12/11		Axle	1	0	49	4	0	0	0	0	0	1	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10/12/11	02:00	Axle	1	0	39	2	0	1	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10/12/11	03:00	Axle	1	0	38	5	0	3	1	0	0	0	0	0	0	0
10/12/11 05:00 Axie 1 0 159 20 0 6 0 0 1 0 0 0 0 10/12/11 07:00 Axie 1 1 273 31 0 2 1 0 1 4 1 0 0 3 0 10/12/11 07:00 Axie 1 0 411 45 0 4 2 0 5 144 0 0 3 0 10/12/11 08:00 Axie 1 0 283 52 0 7 5 0 5 6 0 1 2 1 10/12/11 11:00 Axie 1 0 286 57 0 4 4 0 3 15 1 0 2 0 1 <t< td=""><td></td><td></td><td></td><td>1</td><td>0</td><td>51</td><td>5</td><td>0</td><td>6</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>				1	0	51	5	0	6	0	0	0	0	0	0	0	0
10/12/11 06:00 Axle 1 1 273 31 0 2 1 0 1 4 1 0 0 0 10/12/11 08:00 Axle 1 0 409 44 0 3 2 0 3 16 0 0 3 0 10/12/11 08:00 Axle 1 0 317 43 0 6 2 0 3 6 0 0 1 1 10/12/11 10:00 Axle 1 0 296 57 0 4 4 0 3 14 0 0 0 1 1 10/12/11 13:00 Axle 1 0 326 5 0 3 15 1 0 2 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 <td< td=""><td></td><td></td><td></td><td>1</td><td>0</td><td>159</td><td>20</td><td>0</td><td>6</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>				1	0	159	20	0	6	0	0	0	1	0	0	0	0
10/12/11 08:00 Axie 1 0 411 45 0 4 2 0 5 14 0 0 3 0 10/12/11 09:00 Axie 1 0 317 43 0 6 2 0 3 6 0 0 1 1 10/12/11 11:00 Axie 1 0 286 57 0 4 4 0 3 14 0 0 0 1 10/12/11 13:00 Axie 1 0 286 54 0 13 4 0 3 15 1 0 2 0 1 10/12/11 15:00 Axie 1 0 361 62 0 8 3 0 3 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1				1	1	273	31	0	2	1	0	1	4	1	0	0	0
10/12/11 08:00 Axie 1 0 411 45 0 4 2 0 5 14 0 0 3 0 10/12/11 09:00 Axie 1 0 317 43 0 6 2 0 3 6 0 1 1 10/12/11 11:00 Axie 1 0 286 57 0 4 4 0 3 14 0 0 0 1 10/12/11 13:00 Axie 1 0 286 54 0 13 4 0 3 15 1 0 2 0 10/12/11 15:00 Axie 1 0 361 62 0 8 3 0 3 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	10/12/11	07:00	Axle	1	0	409	44	0	3	2	0	3	16	0	0	3	0
10/12/11 09:00 Axle 1 0 317 43 0 6 2 0 3 6 0 0 1 1 10/12/11 11:00 Axle 1 0 286 57 0 4 4 0 3 14 0 0 0 1 10/12/11 12:00 Axle 1 0 321 50 0 5 5 0 3 17 0 0 0 1 10/12/11 13:00 Axle 1 0 366 1 23 6 0 5 11 0 2 0 1 10/12/11 15:00 Axle 1 0 361 62 0 8 3 0 3 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 <				1	0			0			0			0	0		0
10/12/11 10:00 Axle 1 0 283 52 0 7 5 0 5 6 0 1 2 1 10/12/11 11:00 Axle 1 0 296 57 0 4 4 0 3 14 0 0 0 1 10/12/11 13:00 Axle 1 0 226 54 0 13 4 0 3 15 1 0 2 0 10/12/11 14:00 Axle 1 0 286 54 0 13 4 0 3 15 1 0 2 0 10/12/11 15:00 Axle 1 0 361 62 0 8 3 0 3 10 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1				1	0				6		0			0	0	1	1
10/12/11 11:00 Axle 1 0 296 57 0 4 4 0 3 14 0 0 0 1 10/12/11 13:00 Axle 1 0 321 50 0 5 5 0 3 77 0 0 0 1 10/12/11 14:00 Axle 1 1 350 68 1 23 6 0 5 22 1 0 1 0 10/12/11 16:00 Axle 1 0 361 62 0 6 6 0 5 11 0 0 0 1 0 10/12/11 16:00 Axle 1 0 380 44 0 5 1 0 4 5 0 0 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0				1	0			0			0			0	1	2	1
10/12/11 12:00 Axle 1 0 321 50 0 5 5 0 3 7 0 0 0 1 10/12/11 13:00 Axle 1 1 350 68 1 23 6 0 5 22 1 0 1 0 2 0 10/12/11 15:00 Axle 1 0 418 69 0 6 6 0 5 11 0 0 0 1 10/12/11 16:00 Axle 1 0 361 62 0 8 3 0 3 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 <td< td=""><td></td><td></td><td></td><td>1</td><td>0</td><td></td><td></td><td>0</td><td>4</td><td></td><td>0</td><td></td><td></td><td>0</td><td>0</td><td></td><td>1</td></td<>				1	0			0	4		0			0	0		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0			0	5	5	0			0	0	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1	0			0			0			1	0	2	0
10/12/11 15:00 Axle 1 0 418 69 0 6 6 0 5 11 0 0 1 10/12/11 16:00 Axle 1 0 361 62 0 8 3 0 3 10 1 0 1 0 10/12/11 17:00 Axle 1 0 380 44 0 5 1 0 4 5 0 0 2 10/12/11 18:00 Axle 1 0 234 22 0 1 0 0 0 1 0 0 1 0 10/12/11 20:00 Axle 1 0 177 18 0 0 0 1 0 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>6</td><td>0</td><td></td><td></td><td>1</td><td>0</td><td></td><td></td></td<>					1					6	0			1	0		
10/12/11 16:00 Axle 1 0 361 62 0 8 3 0 3 10 1 0 1 0 10/12/11 17:00 Axle 1 0 380 44 0 5 1 0 4 5 0 0 2 0 10/12/11 18:00 Axle 1 0 330 33 1 0 0 1 6 0 0 1 0 10/12/11 19:00 Axle 1 0 234 22 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0<	10/12/11		Axle	1	0	418	69	0	6	6	0	5	11	0	0	0	1
10/12/11 17:00 Axle 1 0 380 44 0 5 1 0 4 5 0 0 2 0 10/12/11 18:00 Axle 1 0 330 33 1 0 0 1 6 0 0 0 0 10/12/11 19:00 Axle 1 0 234 22 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 <td>10/12/11</td> <td>16:00</td> <td>Axle</td> <td>1</td> <td>0</td> <td>361</td> <td>62</td> <td>0</td> <td>8</td> <td>3</td> <td>0</td> <td>3</td> <td>10</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td>	10/12/11	16:00	Axle	1	0	361	62	0	8	3	0	3	10	1	0	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Axle	1	0	380	44	0	5	1	0	4	5	0	0	2	0
10/12/11 19:00 Axle 1 0 234 22 0 1 0 0 2 2 0 0 1 0 10/12/11 20:00 Axle 1 0 213 18 0 0 0 0 3 0 0 1 0 10/12/11 21:00 Axle 1 0 177 11 1 0 0 0 1 0 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>1</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td>				1						0	0	1		0	0		0
10/12/11 20:00 Axle 1 0 213 18 0 0 0 0 3 0 0 1 0 10/12/11 21:00 Axle 1 0 177 11 1 0 0 0 1 0				1				0			0	2		0	0	1	
10/12/11 21:00 Axle 1 0 177 11 1 0 0 1 0									0		0				0	1	
10/12/11 22:00 Axle 1 0 150 12 0 1 0 0 4 0 0 0 0 10/12/11 23:00 Axle 1 0 110 11 0 0 0 0 1 0																0	
10/12/11 23:00 Axle 1 0 110 11 0 0 0 0 1 0 0 0 0 10/13/11 00:00 Axle 1 0 84 2 0 0 0 0 1 0 0 0 0 10/13/11 01:00 Axle 1 0 47 2 0				1	0		12	0	1	0	0	0	4	0	0	0	0
10/13/11 00:00 Axle 1 0 84 2 0 0 0 0 1 0 0 0 0 10/13/11 01:00 Axle 1 0 47 2 0				1	0			0	0	0	0	0	1	0	0	0	0
10/13/11 01:00 Axle 1 0 47 2 0				1	0		2	0	0	0	0	0	1	0	0	0	0
10/13/11 02:00 Axle 1 0 39 2 0 1 0				1	0			0	0	0	0	0	0	0	0	0	0
10/13/11 03:00 Axle 1 0 41 4 0 3 0					0			0	1	0	0	1			0	0	0
10/13/11 04:00 Axle 1 0 59 4 0 5 0 0 1 0 0 0 0 10/13/11 05:00 Axle 1 0 164 12 0 7 0 0 1 0					0			0	3			0		0	0	0	0
10/13/11 05:00 Axle 1 0 164 12 0 7 0 0 1 0				1	0		4				0			0		0	
10/13/11 06:00 Axle 1 1 272 32 0 2 1 0 4 6 1 0 1 0 10/13/11 07:00 Axle 1 1 444 44 0 4 0 3 9 0 0 3 0 10/13/11 08:00 Axle 1 0 411 42 0 2 14 0 6 12 0 0 4 1 10/13/11 09:00 Axle 1 0 320 63 0 8 4 0 4 8 1 0 3 0 10/13/11 10:00 Axle 1 0 270 37 0 5 2 0 4 10 0 0 1 0					0								0				
10/13/1107:00Axle114444404039003010/13/1108:00Axle104114202140612004110/13/1109:00Axle1032063084048103010/13/1110:00Axle102703705204100010												4					
10/13/1108:00Axle104114202140612004110/13/1109:00Axle1032063084048103010/13/1110:00Axle102703705204100010				1	1					0				0		3	
10/13/11 09:00 Axle 1 0 320 63 0 8 4 0 4 8 1 0 3 0 10/13/11 10:00 Axle 1 0 270 37 0 5 2 0 4 10 0 0 1 0					0			-						-		-	
10/13/11 10:00 Axle 1 0 270 37 0 5 2 0 4 10 0 0 1 0					-			-			-			-		-	-
								0			0			0			
				1				1									

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/11/11	10:00	Axle	1	2	270	70	0	6	7	0	1	6	0	0	0	0
10/11/11	11:00	Axle	1	1	280	57	0	8	10	0	2	6	0	0	0	0
10/11/11	12:00	Axle	1	2	293	57	0	8	7	0	2	8	2	0	0	0
10/11/11	13:00	Axle	1	2	303	57	1	5	2	0	2	6	2	0	0	1
10/11/11	14:00	Axle	1	1	395	75	0	6	3	1	5	8	1	0	0	0
10/11/11	15:00	Axle	1	4	519	94	1	6	4	1	3	8	2	0	0	0
10/11/11	16:00	Axle	1	1	498	66	0	4	1	0	2	4	0	0	0	0
10/11/11	17:00	Axle	1	1	525	64	0	3	0	0	1	7	0	0	0	0
10/11/11	18:00	Axle	1	4	360	45	2	8	1	0	0	4	0	0	0	0
10/11/11	19:00	Axle	1	0	307	32	2	5	1	0	1	3	0	0	0	0
10/11/11	20:00	Axle	1	3	248	22	0	1	0	0	1	1	0	1	0	0
10/11/11	21:00	Axle	1	0	223	19	0	2	0	0	1	1	0	0	0	0
10/11/11	22:00	Axle	1	0	202	21	0	0	0	0	1	0	0	0	0	0
10/11/11	23:00	Axle	1	0	144	13	0	0	0	0	0	1	0	0	0	0
10/12/11	00:00	Axle	1	0	75	12	1	2	0	0	0	1	0	0	0	0
10/12/11	01:00	Axle	1	0	67	3	0	3	0	0	0	0	0	0	0	0
10/12/11	02:00	Axle	1	1	28	4	0	2	0	0	0	1	0	0	0	0
10/12/11	03:00	Axle	1	0	39	5	1	1	0	0	0	0	0	0	0	0
10/12/11	04:00	Axle	1	1	34	15	0	2	0	0	0	1	0	0	0	0
10/12/11	05:00	Axle	1	0	63	18	0	0	1	0	0	3	0	0	0	0
10/12/11	06:00	Axle	1	0	181	31	0	4	2	0	0	0	0	0	0	0
10/12/11	07:00	Axle	1	1	343	57	6	7	2	0	3	4	0	0	0	0
10/12/11	08:00	Axle	1	0	318	66	8	4	8	0	1	5	1	0	0	0
10/12/11	09:00	Axle	1	0	257	67	5	7	4	0	3	6	0	0	0	0
10/12/11	10:00	Axle	1	0	246	65	2	7	3	0	3	7	0	0	0	0
10/12/11	11:00	Axle	1	0	297	53	0	4	1	0	4	11	0	0	0	0
10/12/11	12:00	Axle	1	1	302	63	0	5	6	0	2	6	1	1	0	1
10/12/11	13:00	Axle	1	0	316	53	0	7	7	0	4	6	0	0	0	0
10/12/11	14:00	Axle	1	0	364	76	1	6	9	0	2	7	0	0	0	1
10/12/11	15:00	Axle	1	1	452	72	1	5	8	0	3	7	0	0	0	0
10/12/11	16:00	Axle	1	1	460	73	0	4	6	1	2	5	0	0	0	0
10/12/11	17:00	Axle	1	0	472	43	0	1	0	0	1	3	0	0	0	0
10/12/11	18:00	Axle	1	1	369	40	4	4	3	0	0	2	0	0	0	0
10/12/11	19:00	Axle	1	0	304	32	5	2	0	0	0	3	0	0	0	0
10/12/11	20:00	Axle	1	0	254	25	0	1	0	0	0	2	0	0	0	0
10/12/11	21:00	Axle	1	0	194	31	1	1	0	0	0	0	0	0	0	0
10/12/11	22:00	Axle	1	0	171	19	0	1	0	0	1	0	0	0	0	0
10/12/11	23:00	Axle	1	1	152	18	0	0	0	0	0	0	0	0	0	0
10/13/11	00:00	Axle	1	0	75	15	0	4	0	0	0	0	0	0	0	0
10/13/11	01:00	Axle	1	0	56	5	2	1	0	0	0	0	0	0	0	0
10/13/11	02:00	Axle	1	0	47	4	0	2	0	0	0	0	0	0	0	0
10/13/11	03:00	Axle	1	0	23	3	1	1	0	0	0	0	0	0	0	0
10/13/11	04:00	Axle	1	0	27	10	0	1	0	0	0	1	0	0	0	0
10/13/11	05:00	Axle	1	0	68	19	0	1	0	0	1	0	0	0	0	0
10/13/11	06:00	Axle	1	0	203	34	1	2	4	0	0	2	0	0	0	0
10/13/11	07:00	Axle	1	0	369	56	4	5	7	0	4	4	0	0	0	0
10/13/11	08:00	Axle	1	0	311	69	7	7	1	0	3	7	2	0	0	1
10/13/11	09:00	Axle	1	0	300	58	2	10	5	0	4	7	1	1	0	0
10/13/11	10:00	Axle	1	0	256	61	1	5	5	0	3	6	1	0	0	0
10/13/11	11:00	Axle	1	0	267	68	0	6	4	0	5	7	1	0	0	0

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/11/11	10:00	Axle	1	1	204	48	0	3	3	0	4	9	0	0	0	0
10/11/11	11:00	Axle	1	0	258	33	1	8	2	0	2	3	1	0	0	0
10/11/11	12:00	Axle	1	0	285	43	0	3	3	0	5	3	0	0	0	0
10/11/11	13:00	Axle	1	2	278	51	0	3	2	0	2	5	0	0	0	0
10/11/11	14:00	Axle	1	5	367	59	0	9	4	1	0	5	0	0	0	0
10/11/11	15:00	Axle	1	5	395	63	1	0	1	0	3	6	1	0	0	1
10/11/11	16:00	Axle	1	6	483	68	1	3	1	0	2	5	1	0	0	0
10/11/11	17:00	Axle	1	3	507	60	0	1	1	1	1	3	0	0	0	0
10/11/11	18:00	Axle	1	2	398	43	0	0	0	0	0	3	0	1	0	0
10/11/11	19:00	Axle	1	6	368	31	0	0	0	0	1	0	0	0	0	0
10/11/11	20:00	Axle	1	3	243	18	0	3	0	0	0	0	0	0	0	0
10/11/11	21:00	Axle	1	0	196	18	0	1	0	0	1	0	0	0	0	0
10/11/11	22:00	Axle	1	0	184	14	0	0	0	0	0	0	0	0	0	0
10/11/11	23:00	Axle	1	2	119	10	0	0	0	0	0	0	0	0	0	0
10/12/11	00:00	Axle	1	0	72	5	0	0	0	0	0	0	0	0	0	0
10/12/11	01:00	Axle	1	1	43	0	0	0	0	0	0	0	0	0	0	0
10/12/11	02:00	Axle	1	0	36	7	0	1	0	0	0	0	0	0	0	0
10/12/11	03:00	Axle	1	0	32	0	0	0	0	0	0	0	0	0	0	0
10/12/11	04:00	Axle	1	0	32	3	0	0	0	0	0	0	0	0	0	0
10/12/11	05:00	Axle	1	0	75	11	0	0	0	0	0	0	0	0	0	0
10/12/11	06:00	Axle	1	1	166	17	0	1	1	0	0	1	0	0	0	0
10/12/11	07:00	Axle	1	1	243	26	0	2	2	0	1	1	0	0	0	0
10/12/11	08:00	Axle	1	6	251	27	0	6	1	0	2	5	0	1	1	1
10/12/11	09:00	Axle	1	2	214	33	0	3	7	0	2	4	1	0	0	0
10/12/11	10:00	Axle	1	1	176	39	0	5	8	1	3	4	0	0	0	0
10/12/11	11:00	Axle	1	0	236	40	0	6	13	0	0	3	1	0	0	1
10/12/11	12:00	Axle	1	1	301	40	0	0	7	1	3	5	0	0	0	1
10/12/11	13:00	Axle	1	0	269	43	0	7	3	0	2	6	0	0	0	1
10/12/11	14:00	Axle	1	1	335	35	0	10	2	0	2	5	0	0	0	0
10/12/11	15:00	Axle	1	0	413	63	0	5	2	0	4	7	1	0	0	1
10/12/11	16:00	Axle	1	1	476	69	0	5	0	1	2	3	2	0	0	2
10/12/11	17:00	Axle	1	3	502	54	0	2	0	0	0	2	0	0	0	0
10/12/11	18:00	Axle	1	1	355	35	0	4	1	0	2	7	0	0	0	0
10/12/11	19:00	Axle	1	0	282	30	0	0	0	0	0	2	0	0 0	0	0 0
10/12/11	20:00	Axle	1	1	244	21	0	0	0	0	0	0	0	0	0	0
10/12/11	21:00	Axle	1	0	179	20	0	0	0	0	1	1	0	0	0	0
10/12/11	22:00	Axle	1	2	185	11	0	1	0	0	2	0	0	0	0	0
10/12/11	23:00	Axle	1	0	112	6	0	0	0	0	0	0	0	0	0	0
10/13/11	00:00	Axle	1	0	70	4	0	0	0	0	0	0	0	0	0	0
10/13/11	01:00	Axle	1	0	42	6	0	0	0	0	1	0	0	0	0	0
10/13/11	02:00	Axle	1	0	41	5	0	0	0	0	1	1	0	0	0	0
10/13/11	03:00	Axle	1	0	28	1	0	1	0	0	0	0	0	0	0	0
10/13/11	04:00	Axle	1	Ő	39	3	0	0	0	0 0	0	0	0	Ő	0 0	0 0
10/13/11	05:00	Axle	1	Ő	88	9	Ő	0	1	0 0	0	0	0 0	Ő	0 0	Ő
10/13/11	06:00	Axle	1	Ő	159	19	Ő	2	0	0 0	0	0	0 0	Ő	0 0	Ő
10/13/11	07:00	Axle	1	Ő	272	38	0	5	2	Ő	1	3	0 0	Ő	0 0	Ő
10/13/11	08:00	Axle	1	Ő	263	39	0	6	2	Ő	1	2	0 0	Ő	0 0	Ő
10/13/11	09:00	Axle	1	Ő	248	35	Ő	7	1	0 0	0	1	0 0	Ő	0 0	0 0
10/13/11	10:00	Axle	1	Ő	239	48	Ő	, 5	4	0 0	2	4	0	Ő	0	0 0
10/13/11	11:00	Axle	1	1	264	36	0	7	1	0	5	9	0	0 0	0	0 0
		1 240					2		-	-	2	2	5	Ũ	5	-

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/24/11	13:00	Axle	1	0	383	56	0	5	0	0	2	10	0	0	1	0
10/24/11	14:00	Axle	1	0	417	64	0	4	1	0	1	10	0	0	0	2
10/24/11	15:00	Axle	1	0	431	50	0	5	0	0	0	5	0	0	1	0
10/24/11	16:00	Axle	1	0	391	30	1	5	0	0	0	5	0	0	0	0
10/24/11	17:00	Axle	1	0	376	40	0	2	0	0	3	5	0	0	0	0
10/24/11	18:00	Axle	1	0	346	33	0	0	0	0	4	5	0	0	1	0
10/24/11	19:00	Axle	1	0	234	25	0	1	0	0	0	3	0	1	0	0
10/24/11	20:00	Axle	1	0	222	23	0	0	0	0	0	4	0	0	0	0
10/24/11	21:00	Axle	1	0	183	7	0	1	0	0	0	2	0	0	0	0
10/24/11	22:00	Axle	1	0	184	11	0	0	0	0	0	1	0	0	0	1
10/24/11	23:00	Axle	1	0	134	6	0	0	0	0	0	1	0	0	0	0
10/25/11	00:00	Axle	1	0	72	8	0	0	0	0	1	0	0	0	0	0
10/25/11	01:00	Axle	1	0	32	2	0	0	0	0	0	0	0	0	0	0
10/25/11	02:00	Axle	1	0	22	4	0	0	0	0	0	0	0	0	0	0
10/25/11	03:00	Axle	1	0	32	4	0	0	0	0	0	0	0	0	0	0
10/25/11	04:00	Axle	1	0	81	7	0	0	0	0	0	0	0	0	0	0
10/25/11	05:00	Axle	1	1	282	19	0	0	0	0	0	6	0	0	0	0
10/25/11	06:00	Axle	1	0	771	91	0	0	0	0	10	25	1	0	3	0
10/25/11	07:00	Axle	1	1	559	69	1	1	1	0	8	35	5	2	3	0
10/25/11	08:00	Axle	1	1	786	82	0	1	1	1	2	30	3	1	6	0
10/25/11	09:00	Axle	1	0	521	68	0	3	0	0	4	10	0	1	1	1
10/25/11	10:00	Axle	1	0	381	56	0	1	0	0	4	5	0	0	2	0
10/25/11	11:00	Axle	1	0	348	50	0	1	0	0	3	5	0	0	1	0
10/25/11	12:00	Axle	1	1	381	55	0	5	0	0	4	8	0	0	1	0
10/25/11	13:00	Axle	1	0	380	63	0	5	0	0	0	5	0	1	0	1

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/24/11	13:00	Axle	1	0	187	72	0	3	0	0	0	2	0	0	1	0
10/24/11	14:00	Axle	1	0	298	114	1	2	0	0	0	3	0	0	0	0
10/24/11	15:00	Axle	1	0	383	67	0	1	1	0	0	5	0	0	0	0
10/24/11	16:00	Axle	1	0	466	50	0	0	0	0	0	7	0	0	1	0
10/24/11	17:00	Axle	1	0	361	36	0	0	0	0	3	5	1	0	1	0
10/24/11	18:00	Axle	1	0	287	36	0	1	0	0	0	4	0	0	1	0
10/24/11	19:00	Axle	1	0	219	16	0	0	0	0	0	5	0	0	0	0
10/24/11	20:00	Axle	1	0	170	10	0	0	0	0	0	2	0	0	0	0
10/24/11	21:00	Axle	1	0	115	7	0	1	0	0	0	7	0	0	0	0
10/24/11	22:00	Axle	1	0	104	6	0	1	0	0	1	0	0	0	0	0
10/24/11	23:00	Axle	1	0	87	2	0	0	0	0	0	0	0	0	0	0
10/25/11	00:00	Axle	1	0	66	3	0	0	0	0	0	0	0	0	0	0
10/25/11	01:00	Axle	1	0	35	1	0	0	0	0	0	0	0	0	0	0
10/25/11	02:00	Axle	1	0	23	1	0	0	0	0	0	0	0	0	0	0
10/25/11	03:00	Axle	1	0	22	1	0	0	0	0	1	0	0	0	0	0
10/25/11	04:00	Axle	1	1	13	0	0	0	0	0	0	0	0	0	0	0
10/25/11	05:00	Axle	1	0	37	1	0	0	0	0	0	2	1	0	0	0
10/25/11	06:00	Axle	1	0	89	5	0	1	0	0	0	4	1	0	0	0
10/25/11	07:00	Axle	1	3	207	20	0	3	0	0	5	5	1	0	4	0
10/25/11	08:00	Axle	1	0	224	24	0	2	0	0	2	5	2	1	2	0
10/25/11	09:00	Axle	1	0	195	32	0	1	0	0	2	5	1	0	1	0
10/25/11	10:00	Axle	1	0	169	28	0	2	0	1	0	5	2	0	0	1
10/25/11	11:00	Axle	1	1	212	33	0	2	0	0	0	5	1	1	2	0
10/25/11	12:00	Axle	1	0	259	42	0	2	3	0	3	5	2	0	1	1
10/25/11	13:00	Axle	1	0	243	44	0	4	1	0	0	4	1	0	7	1

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/24/11	14:00	Axle	1	1	355	32	0	5	0	0	0	3	0	0	1	0
10/24/11	15:00	Axle	1	0	365	35	0	1	0	0	0	1	0	0	0	0
10/24/11	16:00	Axle	1	0	370	32	0	5	1	0	0	2	0	0	0	0
10/24/11	17:00	Axle	1	0	381	33	0	3	0	0	0	2	1	0	1	0
10/24/11	18:00	Axle	1	2	318	27	0	2	0	0	0	1	0	0	1	0
10/24/11	19:00	Axle	1	0	210	21	0	0	0	0	0	2	0	0	0	0
10/24/11	20:00	Axle	1	0	196	8	0	1	0	0	0	0	0	0	0	0
10/24/11	21:00	Axle	1	1	144	16	0	1	0	0	0	0	0	0	0	0
10/24/11	22:00	Axle	1	0	110	9	0	0	0	0	0	0	0	0	0	0
10/24/11	23:00	Axle	1	0	118	8	0	0	0	0	0	0	0	0	0	0
10/25/11	00:00	Axle	1	1	48	1	0	0	0	0	0	0	0	0	0	0
10/25/11	01:00	Axle	1	0	40	1	0	0	0	0	0	0	0	0	0	0
10/25/11	02:00	Axle	1	0	12	1	0	0	0	0	0	0	0	0	0	0
10/25/11	03:00	Axle	1	0	24	1	0	0	0	0	0	0	0	0	0	0
10/25/11	04:00	Axle	1	0	35	3	0	0	0	0	0	0	0	0	0	0
10/25/11	05:00	Axle	1	0	116	13	0	1	0	0	1	0	0	0	0	0
10/25/11	06:00	Axle	1	2	366	61	0	2	0	0	0	5	0	0	0	0
10/25/11	07:00	Axle	1	0	389	34	0	1	0	0	0	9	1	3	5	0
10/25/11	08:00	Axle	1	1	374	55	0	2	0	0	0	9	3	3	9	0
10/25/11	09:00	Axle	1	0	417	48	0	5	1	1	0	7	1	1	0	0
10/25/11	10:00	Axle	1	0	310	52	0	6	0	0	0	3	0	2	1	0
10/25/11	11:00	Axle	1	1	274	46	0	2	1	0	0	2	0	0	1	0
10/25/11	12:00	Axle	1	1	312	39	0	2	0	0	0	2	0	0	0	0
10/25/11	13:00	Axle	1	0	306	42	0	8	1	0	0	2	0	0	0	0
10/25/11	14:00	Axle	1	1	393	44	0	5	0	0	0	6	0	0	1	0
10/25/11	15:00	Axle	1	2	399	48	0	5	0	0	0	2	0	0	0	0
10/25/11	16:00	Axle	1	1	381	38	0	5	0	0	0	3	0	0	0	0
10/25/11	17:00	Axle	1	3	434	37	0	2	0	0	0	2	0	1	0	0
10/25/11	18:00	Axle	1	1	330	23	0	1	0	0	1	0	0	0	0	0
10/25/11	19:00	Axle	1	1	246	19	0	1	0	0	0	0	0	0	0	0
10/25/11	20:00	Axle	1	0	227	12	0	1	0	0	2	0	0	0	0	0
10/25/11	21:00	Axle	1	0	176	7	0	0	0	0	1	0	0	0	0	0
10/25/11	22:00	Axle	1	0	143	12	0	0	0	0	0	0	0	0	0	0
10/25/11	23:00	Axle	1	0	108	8	0	0	0	0	0	0	0	0	0	0
10/26/11	00:00	Axle	1	1	57	6	0	0	0	0	0	0	0	0	0	0
10/26/11	01:00	Axle	1	0	28	0	0	0	0	0	0	0	0	0	0	0
10/26/11	02:00	Axle	1	0	34	1	0	0	0	0	0	0	0	0	0	0
10/26/11	03:00	Axle	1	0	29	4	0	1	0	0	0	0	0	0	0	0
10/26/11	04:00	Axle	1	0	26	2	0	0	0	0	0	0	0	0	0	0
10/26/11	05:00	Axle	1	0	108	16	0	1	0	0	1	0	0	0	0	0
10/26/11	06:00	Axle	1	0	350	68	0	3	0	0	3	5	0	2	1	0
10/26/11	07:00	Axle	1	0	416	57	0	2	0	0	1	5	5	4	7	0
10/26/11	08:00	Axle	1	1	441	50	0	1	0	1	1	4	4	6	4	0
10/26/11	09:00	Axle	1	0	411	70	0	4	0	0	0	3	1	0	0	1
10/26/11	10:00	Axle	1	0	283	47	0	4	0	0	0	2	0	0	0	0
10/26/11	11:00	Axle	1	1	270	43	0	3	0	0	0	2	0 0	0 0	1	0
10/26/11	12:00	Axle	1	0	353	54	0	1	1	0	0	4	0 0	0 0	0	1
10/26/11	13:00	Axle	1	1	317	51	0	6	1	0	0 0	3	0 0	0 0	0 0	0
							-	-		-	-	-	-	-	-	-

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
11/16/11	00:00	Axle	1	1	122	7	0	2	0	0	0	0	0	0	0	0
11/16/11	01:00	Axle	1	0	74	6	0	0	0	0	0	0	0	0	0	0
11/16/11	02:00	Axle	1	0	42	3	0	1	0	0	0	0	0	0	0	0
11/16/11	03:00	Axle	1	0	30	5	0	0	0	0	0	0	0	0	0	0
11/16/11	04:00	Axle	1	0	23	2	0	0	0	0	0	0	0	0	0	0
11/16/11	05:00	Axle	1	0	108	12	0	1	0	0	0	0	0	0	0	0
11/16/11	06:00	Axle	1	0	175	17	0	2	0	0	0	0	0	0	0	0
11/16/11	07:00	Axle	1	0	432	48	0	4	0	0	1	5	0	0	0	0
11/16/11	08:00	Axle	1	1	354	38	0	2	0	0	1	5	0	0	0	0
11/16/11	09:00	Axle	1	0	262	36	0	2	0	0	0	5	0	0	0	0
11/16/11	10:00	Axle	1	0	287	65	0	2	1	0	0	4	0	0	0	0
11/16/11	11:00	Axle	1	0	344	60	0	4	0	0	0	4	0	0	0	0
11/16/11	12:00	Axle	1	0	424	61	0	5	0	0	0	4	0	0	0	0
11/16/11	13:00	Axle	1	0	442	67	1	4	0	0	2	4	0	0	0	0
11/16/11	14:00	Axle	1	2	583	77	0	2	0	0	1	5	0	0	0	0
11/16/11	15:00	Axle	1	1	841	121	0	4	0	0	1	10	0	0	0	1
11/16/11	16:00	Axle	1	0	1,000	115	0	2	1	0	1	10	1	0	2	0
11/16/11	17:00	Axle	1	0	922	175	0	1	0	0	6	12	0	0	2	0
11/16/11	18:00	Axle	1	0	610	76	0	1	0	0	4	5	0	0	0	0
11/16/11	19:00	Axle	1	0	487	55	0	1	0	0	0	6	1	0	0	0
11/16/11	20:00	Axle	1	0	490	49	0	1	0	0	0	5	0	0	0	0
11/16/11	21:00	Axle	1	0	287	34	0	1	0	0	0	5	0	0	0	0
11/16/11	22:00	Axle	1	0	210	29	0	1	0	0	1	0	0	0	0	0
11/16/11	23:00	Axle	1	0	200	24	0	1	0	0	1	0	0	0	1	0
11/17/11	00:00	Axle	1	0	120	23	0	0	0	0	2	0	0	0	0	0
11/17/11	01:00	Axle	1	0	50	6	0	0	0	0	0	0	0	0	0	0
11/17/11	02:00	Axle	1	0	30	7	0	0	0	0	0	0	0	0	0	0
11/17/11	03:00	Axle	1	0	30	11	0	0	0	0	0	0	0	0	0	0
11/17/11	04:00	Axle	1	0	18	3	0	1	0	0	0	0	0	0	0	0
11/17/11	05:00	Axle	1	0	95	12	0	1	0	0	1	0	0	0	0	0
11/17/11	06:00	Axle	1	0	173	18	0	0	0	0	1	0	0	0	0	0
11/17/11	07:00	Axle	1	0	428	46	0	2	1	0	0	9	0	0	0	0
11/17/11	08:00	Axle	1	0	333	45	1	2	0	0	0	5	0	0	0	0
11/17/11	09:00	Axle	1	0	292	50	0	3	1	0	0	4	0	0	0	0
11/17/11	10:00	Axle	1	0	289	48	0	4	1	0	1	0	0	0	0	0

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/18/11	15:00	Axle	1	0	129	35	0	6	0	0	2	2	0	0	0	0
10/18/11	16:00	Axle	1	0	136	31	0	3	1	0	1	0	0	0	0	0
10/18/11	17:00	Axle	1	0	91	23	0	1	0	0	0	0	0	0	0	0
10/18/11	18:00	Axle	1	0	71	10	0	2	1	0	0	0	0	0	0	0
10/18/11	19:00	Axle	1	0	60	4	0	0	0	0	0	0	0	0	0	0
10/18/11	20:00	Axle	1	0	49	2	0	0	0	0	0	2	0	0	0	0
10/18/11	21:00	Axle	1	0	34	0	0	1	0	0	0	1	0	0	0	0
10/18/11	22:00	Axle	1	0	37	5	0	0	1	0	0	1	0	0	0	0
10/18/11	23:00	Axle	1	0	33	2	0	0	0	0	0	0	0	0	0	0
10/19/11	00:00	Axle	1	0	15	1	0	0	0	0	0	0	0	0	0	0
10/19/11	01:00	Axle	1	0	13	1	0	0	0	0	0	0	0	0	0	0
10/19/11	02:00	Axle	1	0	15	0	0	0	0	0	0	0	0	0	0	0
10/19/11	03:00	Axle	1	0	5	1	0	0	0	0	0	0	0	0	0	0
10/19/11	04:00	Axle	1	0	11	3	0	0	0	0	0	1	0	0	0	0
10/19/11	05:00	Axle	1	0	37	5	0	1	0	0	0	0	0	0	0	0
10/19/11	06:00	Axle	1	0	76	11	0	2	1	0	0	1	0	0	0	0
10/19/11	07:00	Axle	1	0	180	17	0	4	2	0	0	2	1	0	0	0
10/19/11	08:00	Axle	1	0	117	13	0	8	2	1	1	3	0	0	0	1
10/19/11	09:00	Axle	1	0	83	23	0	4	1	0	2	1	0	0	0	0
10/19/11	10:00	Axle	1	0	74	21	0	0	0	0	1	2	0	0	0	0
10/19/11	11:00	Axle	1	0	69	8	0	0	3	0	0	2	0	1	0	0
10/19/11	12:00	Axle	1	1	75	19	0	6	3	0	0	3	0	0	0	0
10/19/11	13:00	Axle	1	0	82	12	1	5	1	0	0	1	0	0	0	0
10/19/11	14:00	Axle	1	0	111	31	0	1	0	0	0	1	0	0	0	0
10/19/11	15:00	Axle	1	0	112	36	0	4	0	0	0	0	1	0	0	0
10/19/11	16:00	Axle	1	0	106	25	0	0	0	0	1	2	0	0	0	0
10/19/11	17:00	Axle	1	0	107	14	0	2	0	0	0	0	0	0	0	0
10/19/11	18:00	Axle	1	0	93	8	0	0	1	0	1	0	0	0	0	0
10/19/11	19:00	Axle	1	0	65	5	0	1	0	0	0	0	0	0	0	0
10/19/11	20:00	Axle	1	0	41	6	0	0	0	0	0	0	0	0	0	0
10/19/11	21:00	Axle	1	0	26	3	0	0	0	0	0	1	0	0	0	0
10/19/11	22:00	Axle	1	0	23	4	0	0	1	0	0	0	0	0	0	0
10/19/11	23:00	Axle	1	0	26	1	0	0	0	0	0	0	0	0	0	0
10/20/11	00:00	Axle	1	0	14	2	0	1	0	0	0	0	0	0	0	0

10/20/11	01:00	Axle	1	0	14	2	0	0	0	0	0	0	0	0	0	0
10/20/11	02:00	Axle	1	1	11	0	0	0	0	0	0	0	0	0	0	0
10/20/11	03:00	Axle	1	0	8	1	0	0	0	0	0	0	0	0	0	0
10/20/11	04:00	Axle	1	0	4	5	0	0	0	0	0	1	0	0	0	0
10/20/11	05:00	Axle	1	0	36	6	0	2	0	0	0	2	0	0	0	0
10/20/11	06:00	Axle	1	0	66	16	0	2	0	0	0	1	0	0	0	0
10/20/11	07:00	Axle	1	0	175	12	0	4	0	0	0	1	0	0	0	0
10/20/11	08:00	Axle	1	1	118	18	0	3	1	0	1	4	0	0	0	0
10/20/11	09:00	Axle	1	0	84	20	0	3	2	0	1	2	0	0	0	0
10/20/11	10:00	Axle	1	0	77	12	0	3	1	0	0	1	1	0	0	0
10/20/11	11:00	Axle	1	0	87	24	0	3	0	0	0	2	1	0	0	0
10/20/11	12:00	Axle	1	0	69	17	0	2	1	0	0	1	0	0	0	0
10/20/11	13:00	Axle	1	0	93	21	0	1	1	0	0	2	0	0	0	0
10/20/11	14:00	Axle	1	0	125	29	0	2	1	0	0	1	1	0	0	0
10/20/11	15:00	Axle	1	0	147	35	0	9	1	0	1	1	0	0	0	0
10/20/11	16:00	Axle	1	0	133	28	0	2	0	0	0	1	0	0	0	0
10/20/11	17:00	Axle	1	0	90	14	0	1	0	0	0	0	0	0	0	0
10/20/11	18:00	Axle	1	0	83	10	0	2	1	0	0	0	0	0	0	0
10/20/11	19:00	Axle	1	0	47	4	0	1	0	0	0	1	0	0	0	0
10/20/11	20:00	Axle	1	0	51	4	0	0	0	0	0	0	0	0	0	0
10/20/11	21:00	Axle	1	0	49	2	0	0	0	0	0	0	0	0	0	0
10/20/11	22:00	Axle	1	0	42	8	0	0	0	0	0	0	0	0	0	0
10/20/11	23:00	Axle	1	0	30	4	0	0	1	0	0	0	0	0	0	0
10/21/11	00:00	Axle	1	0	16	1	0	0	0	0	0	0	0	0	0	0
10/21/11	01:00	Axle	1	0	16	0	0	0	0	0	0	0	0	0	0	0
10/21/11	02:00	Axle	1	0	12	1	0	0	0	0	0	0	0	0	0	0
10/21/11	03:00	Axle	1	0	5	0	0	0	0	0	0	0	0	0	0	0
10/21/11	04:00	Axle	1	0	6	4	0	0	0	0	0	2	0	0	0	0
10/21/11	05:00	Axle	1	0	33	6	0	1	0	0	0	3	0	0	0	0
10/21/11	06:00	Axle	1	0	68	12	0	2	0	0	1	2	0	0	0	0
10/21/11	07:00	Axle	1	0	155	15	0	2	0	0	2	3	1	0	0	0
10/21/11	08:00	Axle	1	0	140	14	0	2	2	0	0	2	0	0	0	0
10/21/11	09:00	Axle	1	0	76	16	0	3	0	0	1	1	0	0	0	0
10/21/11	10:00	Axle	1	0	73	17	0	3	2	0	0	1	0	0	0	0
10/21/11	11:00	Axle	1	0	59	9	0	2	1	0	1	1	0	0	0	0
		-		-												

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/19/11	10:00	Axle	1	0	47	14	0	0	1	0	0	0	0	0	0	0
10/19/11	11:00	Axle	1	0	54	3	0	0	0	1	0	0	0	0	0	0
10/19/11	12:00	Axle	1	0	66	18	0	4	1	0	0	0	0	0	0	0
10/19/11	13:00	Axle	1	0	54	9	0	2	0	0	0	1	0	0	0	0
10/19/11	14:00	Axle	1	1	71	11	0	1	0	0	0	1	0	0	0	0
10/19/11	15:00	Axle	1	0	86	13	0	0	0	0	0	0	1	0	0	0
10/19/11	16:00	Axle	1	0	100	9	0	1	0	0	0	0	0	0	0	0
10/19/11	17:00	Axle	1	0	83	16	0	0	0	0	0	3	0	0	0	0
10/19/11	18:00	Axle	1	0	95	11	0	0	0	0	0	0	0	0	0	0
10/19/11	19:00	Axle	1	0	50	5	0	0	0	0	0	0	0	0	0	0
10/19/11	20:00	Axle	1	0	52	1	0	0	0	0	0	0	0	0	0	0
10/19/11	21:00	Axle	1	0	48	4	0	0	0	0	0	0	0	0	0	0
10/19/11	22:00	Axle	1	0	41	4	0	0	0	0	0	0	0	0	0	0
10/19/11	23:00	Axle	1	0	25	3	0	0	0	0	0	0	0	0	0	0
10/20/11	00:00	Axle	1	0	18	1	0	0	0	0	0	0	0	0	0	0
10/20/11	01:00	Axle	1	0	16	0	0	0	0	0	0	0	0	0	0	0
10/20/11	02:00	Axle	1	0	6	1	0	0	0	0	0	0	0	0	0	0
10/20/11	03:00	Axle	1	0	4	0	0	0	0	0	0	0	0	0	0	0
10/20/11	04:00	Axle	1	0	6	1	0	0	0	0	1	0	0	0	0	0
10/20/11	05:00	Axle	1	0	12	3	0	0	0	0	0	1	0	0	0	0
10/20/11	06:00	Axle	1	0	38	10	0	2	0	0	0	2	0	0	0	0
10/20/11	07:00	Axle	1	0	57	3	0	0	1	0	0	2	0	0	0	0
10/20/11	08:00	Axle	1	0	63	8	0	2	0	0	1	1	0	0	0	0
10/20/11	09:00	Axle	1	0	51	8	0	2	1	0	0	2	0	0	0	0
10/20/11	10:00	Axle	1	0	39	17	0	0	1	0	0	1	1	0	0	0
10/20/11	11:00	Axle	1	0	54	14	0	2	1	0	0	0	1	0	0	0
10/20/11	12:00	Axle	1	1	58	6	0	0	0	0	0	1	0	0	0	0
10/20/11	13:00	Axle	1	0	69	8	0	1	1	0	0	2	0	0	0	0

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
11/15/11	13:00	Axle	1	0	237	47	0	7	5	0	2	5	0	0	0	0
11/15/11	14:00	Axle	1	1	290	52	1	11	2	1	2	5	0	0	0	0
11/15/11	15:00	Axle	1	1	305	58	0	5	5	0	1	7	0	0	0	0
11/15/11	16:00	Axle	1	1	257	43	1	7	3	0	2	7	0	0	1	0
11/15/11	17:00	Axle	1	0	262	29	0	4	2	0	1	3	0	0	0	0
11/15/11	18:00	Axle	1	0	186	22	0	2	0	0	1	2	0	0	0	0
11/15/11	19:00	Axle	1	0	104	12	0	3	0	0	0	2	0	0	0	0
11/15/11	20:00	Axle	1	0	82	8	0	2	0	0	0	0	0	0	0	0
11/15/11	21:00	Axle	1	0	68	6	0	0	0	0	0	0	0	0	0	0
11/15/11	22:00	Axle	1	0	62	3	0	0	0	0	0	0	0	0	0	0
11/15/11	23:00	Axle	1	0	60	2	0	0	0	0	0	0	0	0	0	0
11/16/11	00:00	Axle	1	0	34	6	0	1	1	0	0	0	0	0	0	0
11/16/11	01:00	Axle	1	1	20	3	0	0	0	0	0	0	0	0	0	0
11/16/11	02:00	Axle	1	0	14	4	0	0	0	0	1	0	0	0	0	0
11/16/11	03:00	Axle	1	0	22	3	0	1	1	0	0	0	0	0	0	0
11/16/11	04:00	Axle	1	0	59	2	0	1	0	0	0	2	0	0	0	0
11/16/11	05:00	Axle	1	0	110	23	0	3	0	0	1	0	0	0	0	0
11/16/11	06:00	Axle	1	0	353	84	0	2	4	0	3	7	0	0	0	0
11/16/11	07:00	Axle	1	0	683	103	0	5	1	0	2	14	1	0	3	1
11/16/11	08:00	Axle	1	1	499	79	0	4	3	0	5	10	0	0	0	1
11/16/11	09:00	Axle	1	0	307	80	0	10	3	0	3	7	0	1	0	0
11/16/11	10:00	Axle	1	0	220	54	0	10	2	1	4	5	0	0	0	0
11/16/11	11:00	Axle	1	0	220	64	0	11	3	0	2	3	1	0	0	0
11/16/11	12:00	Axle	1	0	219	54	0	6	2	0	1	4	0	0	0	0
11/16/11	13:00	Axle	1	0	213	55	0	11	3	0	1	6	0	0	0	0
11/16/11	14:00	Axle	1	0	280	87	0	16	1	0	4	5	1	0	0	0
11/16/11	15:00	Axle	1	2	623	154	0	15	4	0	8	18	6	0	8	0
11/16/11	16:00	Axle	1	1	390	63	0	7	6	0	4	18	0	0	1	1
11/16/11	17:00	Axle	1	1	418	62	0	4	2	0	4	6	0	0	0	1
11/16/11	18:00	Axle	1	0	177	21	0	0	0	0	2	1	0	0	1	0
11/16/11	19:00	Axle	1	0	110	13	0	1	0	0	0	0	0	0	0	0
11/16/11	20:00	Axle	1	0	79	9	0	0	0	0	0	0	0	0	0	0
11/16/11	21:00	Axle	1	0	84	9	0	1	0	0	0	1	0	0	0	0
11/16/11	22:00	Axle	1	0	50	7	0	0	0	0	0	0	0	0	0	0
11/16/11	23:00	Axle	1	0	44	3	0	0	0	0	0	0	0	0	0	0
11/17/11	00:00	Axle	1	0	28	5	0	0	0	0	0	1	0	0	0	0
11/17/11	01:00	Axle	1	0	11	2	0	1	0	0	0	0	0	0	0	0
11/17/11	02:00	Axle	1	0	12	3	0	0	0	0	1	0	0	0	0	0
11/17/11	03:00	Axle	1	0	27	4	0	0	0	0	0	1	0	0	0	0
11/17/11	04:00	Axle	1	0	58	6	0	3	1	0	0	2	0	0	0	0
11/17/11	05:00	Axle	1	0	123	25	0	2	0	0	1	1	0	0	0	0

11/17/11	06:00	Axle	1	0	327	98	0	3	0	0	2	6	0	0	0	0
11/17/11	07:00	Axle	1	0	611	98	0	4	4	0	2	20	0	0	3	1
11/17/11	08:00	Axle	1	0	516	90	1	10	1	0	5	12	0	0	0	1
11/17/11	09:00	Axle	1	0	277	45	1	15	2	1	3	4	0	0	0	0
11/17/11	10:00	Axle	1	0	201	54	0	6	3	0	5	3	0	0	0	0
11/17/11	11:00	Axle	1	0	205	52	0	6	3	1	2	5	0	0	0	0

Date	Time	Туре	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
11/15/11	13:00	Axle	1	0	143	45	0	5	5	0	2	7	0	1	0	0
11/15/11	14:00	Axle	1	0	146	35	0	5	3	0	3	9	0	0	0	0
11/15/11	15:00	Axle	1	1	248	46	0	2	0	0	5	8	0	0	0	0
11/15/11	16:00	Axle	1	2	250	37	0	1	0	0	2	9	0	0	4	0
11/15/11	17:00	Axle	1	2	208	23	0	0	0	0	1	5	0	0	0	1
11/15/11	18:00	Axle	1	0	139	9	0	0	0	0	0	3	1	0	0	0
11/15/11	19:00	Axle	1	0	126	10	0	1	0	0	0	4	1	0	0	0
11/15/11	20:00	Axle	1	0	80	8	0	0	0	0	0	1	1	0	0	0
11/15/11	21:00	Axle	1	0	63	3	0	0	0	0	0	1	0	0	0	0
11/15/11	22:00	Axle	1	0	62	0	0	0	0	0	0	1	0	0	0	0
11/15/11	23:00	Axle	1	0	41	3	0	0	0	0	0	0	0	0	0	0
11/16/11	00:00	Axle	1	0	27	3	0	0	0	0	0	0	0	0	0	0
11/16/11	01:00	Axle	1	0	8	1	0	0	0	0	0	0	0	0	0	0
11/16/11	02:00	Axle	1	0	15	0	0	0	0	0	0	0	0	0	0	0
11/16/11	03:00	Axle	1	0	5	0	0	0	1	0	0	0	0	0	0	0
11/16/11	04:00	Axle	1	0	15	1	0	0	0	0	0	0	0	0	0	0
11/16/11	05:00	Axle	1	0	30	3	0	0	0	0	0	0	0	0	0	0
11/16/11	06:00	Axle	1	0	50	4	0	3	0	0	1	2	0	0	0	1
11/16/11	07:00	Axle	1	0	132	14	0	3	1	1	2	7	0	0	0	1
11/16/11	08:00	Axle	1	1	116	26	0	2	0	1	1	7	0	1	0	1
11/16/11	09:00	Axle	1	1	83	22	0	5	1	0	1	4	1	0	0	0
11/16/11	10:00	Axle	1	1	88	32	0	2	0	0	5	5	0	0	0	1
11/16/11	11:00	Axle	1	0	137	35	0	4	1	0	3	7	0	0	0	1
11/16/11	12:00	Axle	1	0	107	33	0	4	8	0	2	6	1	0	0	0
11/16/11	13:00	Axle	1	1	141	28	0	5	3	0	3	4	2	0	0	0
11/16/11	14:00	Axle	1	0	189	39	0	2	2	0	1	8	3	0	0	1
11/16/11	15:00	Axle	1	1	174	28	0	3	1	1	0	5	0	0	1	0
11/16/11	16:00	Axle	1	0	203	37	0	2	0	0	6	12	2	0	0	0
11/16/11	17:00	Axle	1	0	156	19	0	0	0	0	0	7	0	0	0	0
11/16/11	18:00	Axle	1	1	108	11	0	0	0	0	1	1	0	0	0	0
11/16/11	19:00	Axle	1	0	100	13	0	1	0	0	0	3	0	0	0	0
11/16/11	20:00	Axle	1	0	90	16	0	0	0	0	0	2	0	0	0	0
11/16/11	21:00	Axle	1	0	50	12	0	0	0	0	0	0	0	0	0	0
11/16/11	22:00	Axle	1	0	32	9	0	0	0	0	2	0	0	0	0	0
11/16/11	23:00	Axle	1	0	40	7	0	0	0	0	0	0	0	0	0	0
11/17/11	00:00	Axle	1	0	27	5	0	1	0	0	0	0	0	0	0	1
11/17/11	01:00	Axle	1	0	15	2	0	0	1	0	0	0	0	0	0	0
11/17/11	02:00	Axle	1	0	11	1	0	0	0	0	0	0	0	0	0	0
11/17/11	03:00	Axle	1	0	7	1	0	0	0	0	0	0	0	0	0	0
11/17/11	04:00	Axle	1	0	9	1	0	0	0	0	0	0	0	0	0	0
11/17/11	05:00	Axle	1	0	29	3	0	1	0	0	0	0	0	0	0	1
11/17/11	06:00	Axle	1	0	46	9	0	3	0	0	0	2	0	0	0	0
11/17/11	07:00	Axle	1	0	155	17	0	1	1	0	7	2	0	1	1	0
11/17/11	08:00	Axle	1	1	124	14	0	2	2	1	6	3	0	0	0	0
			1 1					-		-				1 0	1 0	

11/17/11	09:00	Axle	1	0	76	23	0	3	0	0	0	1	1	1	0	0
11/17/11	10:00	Axle	1	1	79	29	0	2	1	0	4	6	0	0	0	0
11/17/11	11:00	Axle	1	0	108	26	0	4	0	0	3	5	1	0	0	1
11/17/11	12:00	Axle	1	2	116	24	1	4	3	0	2	3	0	0	1	2
11/17/11	13:00	Axle	1	0	131	25	0	1	2	0	0	8	0	0	0	1

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
66218	3	1	13	8	5	15	1	166	41	3	0	3	1	0	2	1	0	0	0
66218	3	1	13	8	5	16	1	131	33	1	0	1	3	0	5	2	0	0	0
66218	3	1	13	8	5	17	1	138	35	1	1	1	0	0	2	1	0	0	0
66218	3	1	13	8	5	18	0	84	21	1	0	1	0	0	1	0	0	0	0
66218	3	1	13	8	5	19	1	74	18	0	0	0	1	0	0	0	0	0	0
66218	3	1	13	8	5	20	1	74	19	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	5	21	3	59	15	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	5	22	0	55	14	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	5	23	0	48	12	0	0	0	0	0	1	0	0	0	0
66218	3	1	13	8	6	0	1	22	6	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	6	1	0	14	3	0	0	0	0	0	1	0	0	0	0
66218	3	1	13	8	6	2	0	12	3	1	0	1	0	0	0	0	0	0	0
66218	3	1	13	8	6	3	0	10	3	0	0	0	0	0	0	1	0	0	0
66218	3	1	13	8	6	4	0	30	8	0	0	0	0	0	2	0	0	0	0
66218	3	1	13	8	6	5	1	60	15	0	1	0	1	0	2	1	0	0	0
66218	3	1	13	8	6	6	0	202	51	2	1	2	0	0	6	3	0	0	0
66218	3	1	13	8	6	7	3	237	59	2	1	3	2	0	7	1	0	0	0
66218	3	1	13	8	6	8	0	183	46	2	0	2	2	0	4	1	0	0	0
66218	3	1	13	8	6	9	1	134	34	4	1	4	5	0	4	5	0	0	0
66218	3	1	13	8	6	10	0	114	29	4	0	3	3	0	2	5	0	0	0
66218	3	1	13	8	6	11	0	142	35	2	0	3	6	0	4	5	0	0	0
66218	3	1	13	8	6	12	1	150	38	4	1	1	2	0	9	8	0	0	0
66218	3	1	13	8	6	13	1	135	34	4	2	3	3	0	9	7	0	0	0
66218	3	1	13	8	6	14	1	167	42	4	1	4	4	Õ	3	2	Õ	0	0
66218	3	1	13	8	6	15	3	178	44	0	1	0	1	õ	1	2	õ	0	Õ
66218	3	1	13	8	6	16	6	122	30	° 3	1	2	3	õ	5	0	õ	0	0 0
66218	3	1	13	8	6	17	1	143	36	0	0	0	0	0	3	2	0	0	0
66218	3	1	13	8	6	18	0	104	26	1	0	1	1	0	2	0	0	0	0
66218	3	1	13	8	6	19	1	70	17	2	0	1	0	0	0	0	0	0	0
66218	3	1	13	8	6	20	0	70	18	0	0	1	1	0	0	0	0	0	0
66218	3	1	13	8	6	21	0	93	23	0	0	0	1	0	0	1	0	0	0
66218	3	1	13	8	6	22	0	55	14	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	6	23	0	39	10	0	0	1	1	0	0	0	0	0	0
66218	3	1	13	8	7	0	0	24	6	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	7	1	1	24	6	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	7	2	0	10	3	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	7	3	0	14	4	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	7	3	1	14 37	4 9	1	0	1	0	0	0	0	0	0	0
66218		1	13	о 8	7	4 5	1	66	9 17	-	0	1	0	0	4	0	-	-	-
	3	1		о 8		5 6	-			2 2	-	-	4	0		4	0 0	0	0
66218	3	-	13	-	7	-	3	182	46		0	3	-	-	2		-	0	0
66218	3	1	13	8	7	7	1	220	55	5	1	3	5	0	7	2	0	0	0
66218	3	1	13	8	7	8	1	179	45	2	1	1	5	0	7	2	0	0	0
66218	3	1	13	8	7	9	2	152	38	3	1	3	3	0	8	4	0	0	0
66218	3	1	13	8	7	10	1	121	30	6	3	4	2	0	10	5	0	0	0
66218	3	1	13	8	7	11	0	123	31	4	1	4	2	0	3	2	0	0	0
66218	3	1	13	8	7	12	1	148	37	1	0	1	3	0	6	2	0	0	0
66218	3	1	13	8	7	13	0	141	35	6	2	4	4	0	4	3	0	0	0
66218	3	1	13	8	7	14	1	154	39	8	1	5	2	0	4	1	0	0	0

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
66318	3	1	13	8	5	15	1	447	112	4	3	1	0	0	9	0	0	0	0
66318	3	1	13	8	5	16	1	602	151	1	1	0	0	0	5	0	0	0	0
66318	3	1	13	8	5	17	2	531	133	0	1	0	0	0	8	0	0	0	0
66318	3	1	13	8	5	18	2	252	63	0	0	0	0	0	2	0	0	0	0
66318	3	1	13	8	5	19	1	167	42	0	0	0	0	0	2	0	0	0	0
66318	3	1	13	8	5	20	2	153	38	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	5	21	0	118	29	0	1	0	0	0	0	0	0	0	0
66318	3	1	13	8	5	22	1	90	23	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	5	23	0	74	18	0	1	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	0	0	41	10	0	0	0	0	0	1	0	0	0	0
66318	3	1	13	8	6	1	0 0	23	6	0	0 0	0	0	Õ	2	0	0	0	0
66318	3	1	13	8	6	2	ů 0	24	6	0 0	õ	õ	0	õ	0	0	õ	0	0
66318	3	1	13	8	6	3	0	17	4	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	4	0	21	5	1	1	0	0	0	1	0	0	0	0
66318	3	1	13	8	6	5	0	22	5	0	0	1	0	0	0	0	0	0	0
	-	1		8			0			2	-	1	0	-	3	v	-		-
66318	3	1	13	-	6	6	-	86	21		2	•	-	0	-	0	0	0	0
66318	3	-	13	8	6	7	0	153	38	4	3	1	1	0	9	0	0	0	0
66318	3	1	13	8	6	8	0	190	48	4	4	1	0	0	8	0	0	0	0
66318	3	1	13	8	6	9	1	192	48	2	3	1	0	0	8	0	0	0	0
66318	3	1	13	8	6	10	0	204	51	4	2	2	0	0	4	0	0	0	0
66318	3	1	13	8	6	11	0	239	60	5	3	2	0	0	5	0	0	0	0
66318	3	1	13	8	6	12	3	295	74	3	3	0	0	0	10	0	0	0	0
66318	3	1	13	8	6	13	0	323	81	2	2	1	0	0	8	0	0	0	0
66318	3	1	13	8	6	14	1	334	83	4	3	1	0	0	8	0	0	0	0
66318	3	1	13	8	6	15	0	414	104	2	3	1	0	0	6	0	0	0	0
66318	3	1	13	8	6	16	1	533	133	2	1	1	0	0	6	0	0	0	0
66318	3	1	13	8	6	17	4	487	122	0	0	0	0	0	5	0	0	0	0
66318	3	1	13	8	6	18	5	257	64	0	0	0	0	0	1	0	0	0	0
66318	3	1	13	8	6	19	0	159	40	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	20	3	199	50	0	1	0	0	0	2	0	0	0	0
66318	3	1	13	8	6	21	0	144	36	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	22	0	96	24	0	0	0	0	0	1	0	0	0	0
66318	3	1	13	8	6	23	1	73	18	0	1	0	0	0	1	0	0	0	0
66318	3	1	13	8	7	0	0	44	11	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	7	1	0	30	8	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	7	2	0	24	6	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	7	3	0	12	3	0	0	0	0	0	1	0	0	0	0
66318	3	1	13	8	7	4	Õ	18	4	0 0	1	Õ	0	õ	0	Ő	õ	0 0	0
66318	3	1	13	8	7	5	0 0	30	8	0	0	1	0	0 0	1	0	0	0	0
66318	3	1	13	8	7	6	0	89	22	4	3	0	0	0	3	0	0	0	0
66318	3	1	13	8	7	7	0	150	38	4	3	1	0	0	9	1	0	0	0
66318	3	1	13	8	7	8	0	176	44	6	3	1	0	0	13	0	0	0	0
66318	3	1	13	8	7	9	0	169	44	7	5	3	0	0	13	0	0	0	0
66318		1	13	о 8	7	9 10	1	206	42 51	8	5	2	0	0	5	0	0	-	0
	3	1			7					8 4	-		-			-	0	0	-
66318	3	-	13	8		11	0	227	57	•	3	1	1	0	6 F	0	-	0	0
66318	3	1	13	8	7	12	1	240	60	4	5	1	0	0	5	0	0	0	0
66318	3	1	13	8	7	13	0	294	74	3	2	1	0	0	7	0	0	0	0
66318	3	1	13	8	7	14	0	306	77	7	5	2	0	0	7	0	0	0	0

SUMMARY OF SUPPLEMENTAL TRAFFIC STUDIES

TRAFFIC SIGNAL WARRANT ANALYSIS

Traffic count data collected at the I-90 EB Ramp intersection with MLK Drive was used to evaluate eight-hour signal warrants as presented in the Ohio Manual of Uniform Traffic Control Devices (OMUTCD). Signal warrants results are summarized in **Table E1**.

Warrant	Warrant Criteria	Warrant Results			
Warrant 1 Eight Hour Volume: Condition A	600 vph combined on major street approaches AND 200 vph on one minor street approach for any eight hours	Warrant Met (Meets 11 of the 8 hours needed)			
Warrant 1 Eight Hour Volume: Condition B	925 vph combined on major street approaches AND 100 vph on one minor street approach for any eight hours	Warrant Met (Meets 11 of the 8 hours needed)			

TABLE E1: SIGNAL WARRANT RESULTS FOR MLK DRIVE @ EB RAMP INTERSECTION

Monday, January 26, 2015 Cleveland, OH

Yes

Jurisdiction: Intersection: Number of APPROACH Lanes:

Date:

IR 90 EB Ramps & MLK Jr Dr

Major Street =2Minor Street =2Speed Limit =35Population above 10,000?70% Warrant Apply?No

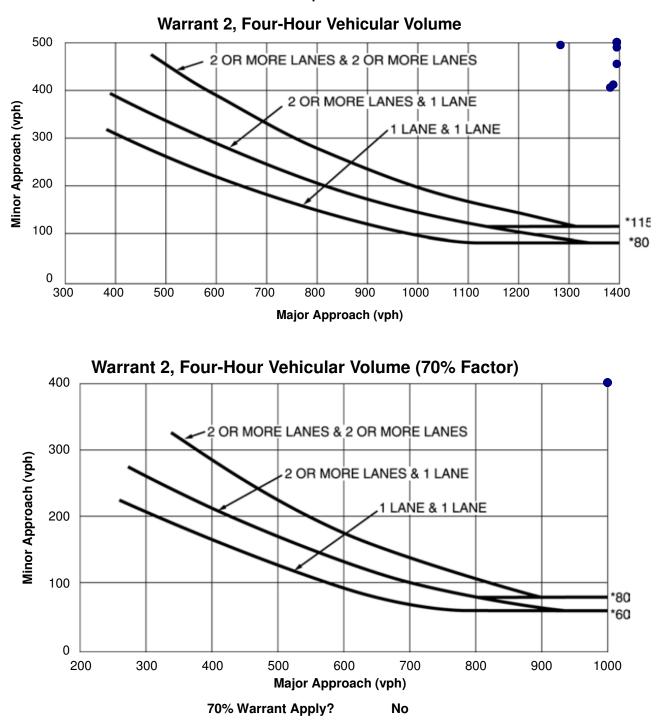
Traffic Signal Warrant (OMUTCD - 2005)

	Warrant 1 - Condition A						
	100%	80%	70%	56%			
Major Approach:	600	480	420	336			
Minor Approach:	200	160	140	112			
Mid - 1AM							
1AM - 2AM							
2:00 AM							
3:00 AM							
4:00 AM							
5:00 AM							
6:00 AM	+	+	+	+			
7:00 AM	+	+	+	+			
8:00 AM	+	+	+	+			
9:00 AM	+	+	+	+			
10:00 AM	+	+	+	+			
11:00 AM	+	+	+	+			
Noon - 1PM	+	+	+	+			
1PM - 2PM	+	+	+	+			
2:00 PM	+	+	+	+			
3:00 PM	+	+	+	+			
4:00 PM	+	+	+	+			
5:00 PM	+	+	+	+			
6:00 PM							
7:00 PM							
8:00 PM							
9:00 PM							
10:00 PM							
11:00 PM							
Hours Met	= 12	12	12	12			

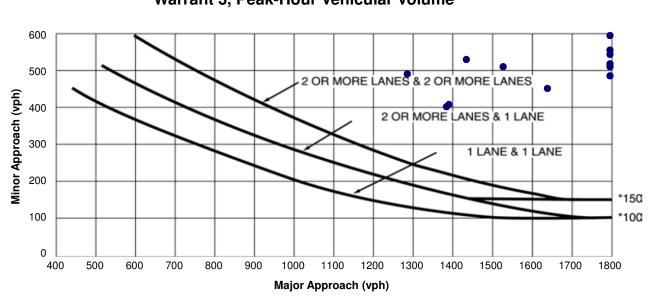
Warr	ant 1 -	Condit	ion B
100%	80%	70%	56%
900	720	630	504
100	80	70	56
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
12	12	12	12

Data:	Majo	r St:	TOTAL	Minc	or St:	> OF TWO
Mid - 1AM	0	0	0	0	0	0
1AM - 2AM	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0
6:00 AM	1284	586	1870	0	548	548
7:00 AM	1192	1013	2205	0	624	624
8:00 AM	808	722	1530	0	514	514
9:00 AM	630	658	1288	0	494	494
10:00 AM	511	926	1437	0	534	534
11:00 AM	526	861	1387	0	404	404
Noon - 1PM	534	859	1393	0	410	410
1PM - 2PM	511	1131	1642	0	454	454
2:00 PM	611	1413	2024	0	489	489
3:00 PM	557	1668	2225	0	514	514
4:00 PM	525	1643	2168	0	560	560
5:00 PM	559	1361	1920	0	522	522
6:00 PM	0	0	0	0	0	0
7:00 PM	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0

Warrant 1 - Condition A:

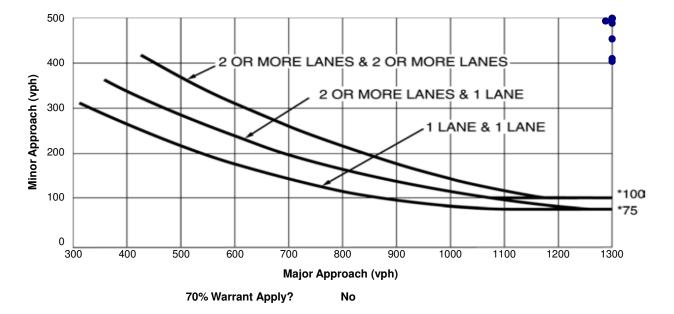

Wallant	i oonantion A.	
100%	Warrant Met?	Yes
70%	Warrant Met?	No

Combination of Warrant 1 - Conditions A & B:


80%	Warrant Met?	Yes
56% (70%)	Warrant Met?	No

Warrant 1 - 0	Condition B:
---------------	--------------

100%	Warrant Met?	Yes
70%	Warrant Met?	No


IR 90 EB Ramps & MLK Jr Dr

Warrant 3, Peak-Hour Vehicular Volume

IR 90 EB Ramps & MLK Jr Dr

SUMMARY OF CAPACITY ANALYSIS

NO BUILD CAPACITY ANALYSIS

Capacity analyses were performed at key locations in the study area to assess existing operations and to identify critical deficiencies that may contribute to safety issues. Analyses were prepared for No Build conditions using 2034 AM and PM peak hour volumes for the analysis modules listed below. Analysis methodology and detailed output reports for all capacity analyses are included in **Appendix E**.

> Freeway section analysis (**Table E1**)

I-90 Mainline

> Ramp merge analysis (**Table E2**)

All I-90 ramps

> Ramp diverge analysis (**Table E3**)

All I-90 ramps

> Intersection analyses (Tables E4 and E5)

E. 55th Street and MLK Drive

TABLE E1: FREEWAY SECTION ANALYSIS

Direction	Section of I-90	Period	2034 No Build
	I-90	AM	B / 18.0
	West of E 55th	PM	C / 24.8
	I-90	AM	B / 16.5
	Btw E 55 th ramps	PM	C / 23.8
	I-90	AM	C / 18.2
EB	Btw E 55th and E 72nd	PM	D / 27.3
LD	I-90	AM	B / 17.9
	Btw E 72 nd ramps	PM	D / 26.8
	I-90	AM	B / 15.4
	Btw MLK ramps	PM	C / 25.1
	I-90	AM	C / 18.1
	East of MLK	PM	D / 31.5
	I-90	AM	D / 26.2
	West of E 55th	PM	C / 18.9
	I-90	AM	C / 25.4
	Btw E 55 th ramps	PM	B / 17.5
	I-90	AM	D / 28.8
WB	Btw E 55th and E 72nd	PM	C / 20.9
VVD	I-90	AM	D / 27.9
	Btw E 72 nd ramps	PM	C / 20.3
	I-90	AM	D / 26.9
	Btw MLK ramps	PM	C / 18.6
	I-90	AM	D / 33.4
	East of MLK	PM	C / 20.9

TABLE E2: RAMP MERGE ANALYSIS

Merge	Period	2034 No Build
I-90 EB Entrance	AM	B / 15.3
From E 55th	PM	C / 23.7
I-90 EB Entrance	AM	weave segment
From E 72nd	PM	weave segment
I-90 EB Entrance	AM	B / 18.6
From MLK Jr Dr	PM	D/31.1
I-90 WB Entrance	AM	weave segment
From MLK Jr Dr	PM	weave segment
I-90 WB Entrance	AM	C / 22.5
From E 55th	PM	B / 17.5
I-90 WB Entrance	AM	C / 23.2
From E 72nd	PM	B / 17.2

TABLE E3: RAMP DIVERGE ANALYSIS

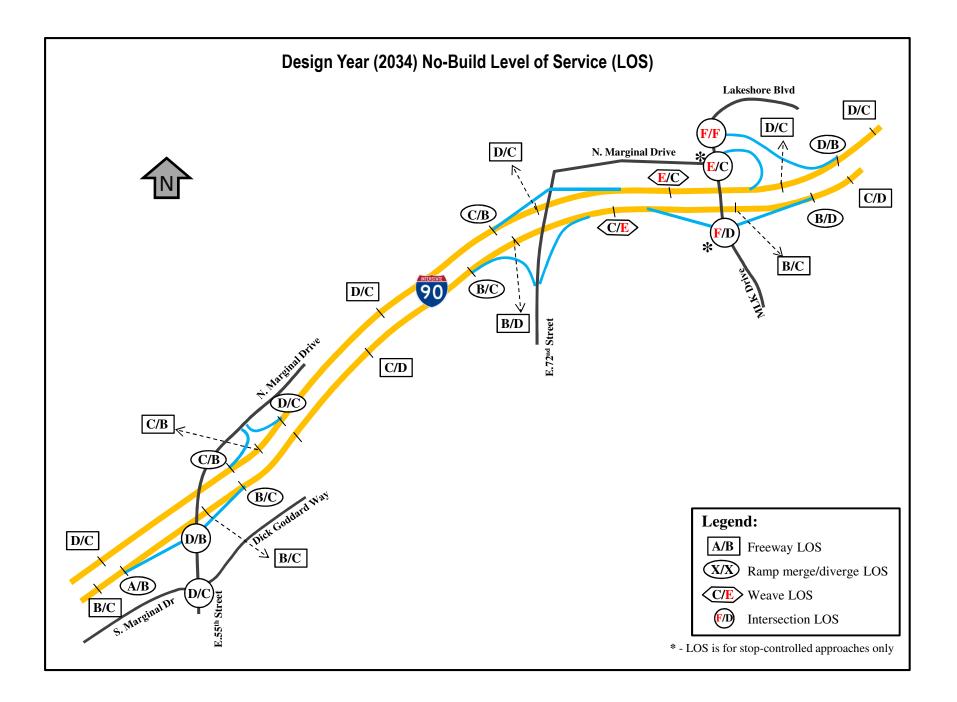
Diverge	Period	2034 No Build
I-90 EB Exit	AM	v/c = 0.19
To E 55th	PM	v/c = 0.14
I-90 EB Exit	AM	B / 15.2
To E 72nd	PM	C / 23.5
I-90 EB Exit	AM	weave segment
To MLK Jr Dr	PM	weave segment
I-90 WB Exit	AM	D / 33.6
To MLK Jr Dr	PM	B / 19.8
I-90 WB Exit	AM	weave segment
To E 72nd	PM	weave segment
I-90 WB Exit	AM	D / 28.8
To E 55th	PM	C / 22.0

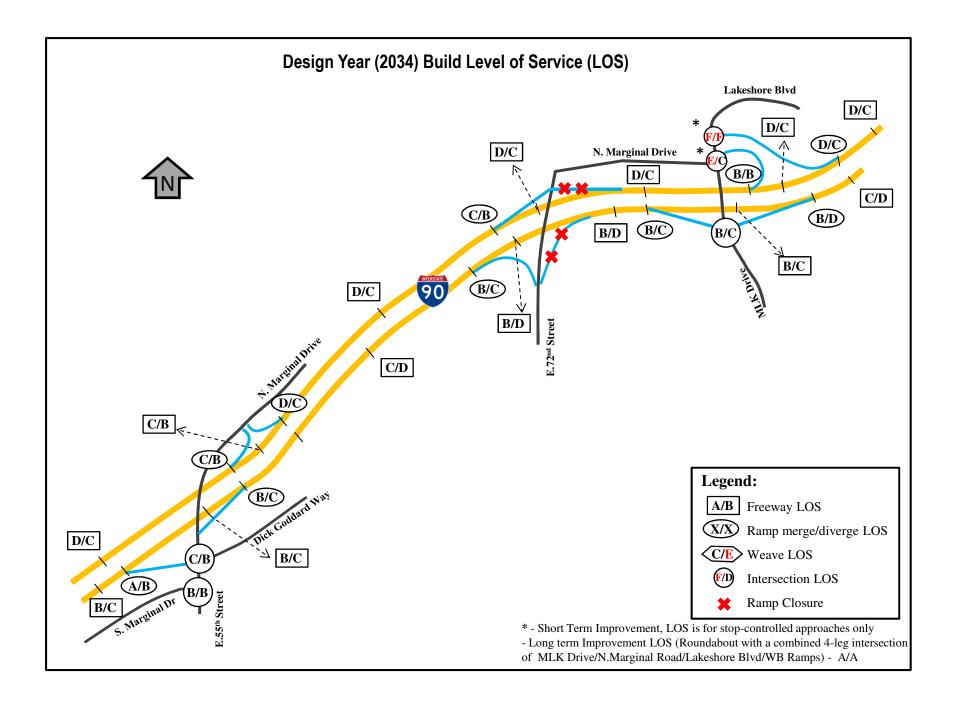
	EB	WB	NB	SB
	APPROACH	APPROACH	APPROACH	APPROACH
MLK at I-90 WB Exit F	Ramp / Lakesl	nore Blvd (2-v	way stop conf	rol)
2034 AM No Build	-	B / 12.9 ¹	F / 8937	F / 6530
2034 PM No Build	-	A/7.3	E / 49.0	F / 86.5
MLK at N. Marginal R	load (1-way s	top control)		
2034 AM No Build	E/37.7	-	A/0.7	FREE
2034 PM No Build	C / 16.3	-	A/0.4	FREE
MLK at I-90 EB Ramp	s (1 way stop	control)		
2034 AM No Build	F / 267.7	-	FREE	A/0.3
2034 PM No Build	D / 25.9	-	FREE	A/1.7

TABLE E4: NO BUILD INTERSECTION ANALYSIS – MLK DRIVE

Numerical values represent delay in seconds per vehicle

1. Westbound queues equal to 1,540 feet as simulated in SimTraffic model


	EB	WB	NB	SB
E. 55th Street at S. I		APPROACH	APPROACH	APPROACH
2034 AM No Build	C / 32.7	F / 160.6	E/75.8	A/2.2
2034 PM No Build	D/37.0	D / 39.2	D/41.9	A/0.5
E. 55th Street at I-9	0 EB Ramps			
2034 AM No Build	F / 118.0	-	A/0.0	D / 42.3
2034 PM No Build	D / 52.4	-	A/2.0	A/0.0
E. 55th Street at N.	Marginal Roa	d		
2034 AM No Build	C / 15.8	-	A/1.0	FREE
2034 PM No Build	C / 16.5	-	A/2.4	FREE
N Marginal at I-90 \	VB Ramps			
2034 AM No Build	FREE	A/7.5	F / 62.4	-
2034 PM No Build	FREE	A/7.8	F / 241.2	-


TABLE E5: NO BUILD CAPACITY ANALYSIS - E. 55TH STREET

Numerical values represent delay in seconds per vehicle

Capacity deficient locations are summarized below. Locations with LOS E or LOS F are considered capacity deficient for the purposes of this evaluation.

- > Mainline I-90 weave segment between E. 72nd Street and MLK Drive (LOS E)
- > MLK Drive at I-90 WB ramp intersection (LOS F on critical approach)
- > MLK Drive at N. Marginal Road intersection (LOS E on critical approach)
- > MLK Drive at I-90 EB ramp intersection (LOS F on EB approach)
- > E. 55th Street at S. Marginal Road/Dick Goddard Way (LOS F on WB approach, LOS E on EB approach)
- > E. 55th Street at I-90 EB ramp intersection (LOS F on EB approach)
- > Mainline weave: I-90 EB and WB between E. 72nd Street and MLK Drive

3: E 55th St & North Marginal 2034 AM Peak No Build

	≯	$\mathbf{\hat{v}}$	•	Ť	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Υ				A⊅		_
Volume (veh/h)	20	20	25	225	660	35	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	22	22	27	245	717	38	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)				415			
pX, platoon unblocked							
vC, conflicting volume	913	378	755				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	913	378	755				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	92	97	97				
cM capacity (veh/h)	268	626	864				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	43	109	163	478	277		
Volume Left	22	27	0	0	0		
Volume Right	22	0	0	0	38		
cSH	375	864	1700	1700	1700		
Volume to Capacity	0.12	0.03	0.10	0.28	0.16		
Queue Length 95th (ft)	10	2	0	0	0		
Control Delay (s)	15.8	2.6	0.0	0.0	0.0		
Lane LOS	С	А					
Approach Delay (s)	15.8	1.0		0.0			
Approach LOS	С						
Intersection Summary							ļ
Average Delay			0.9				1
Intersection Capacity Utiliza	ation		35.7%	IC	CU Level o	of Service	
Analysis Period (min)			15				
			10				

2: E 55th St & I-90 East Exit & I-90 East Entrance 2034 AM Peak No Build

	۶	_#	•	1	1	۲	L	ţ	~	¥	~	
Movement	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		۰Y			≜ ⊅			-4 †				
Volume (vph)	20	0	295	0	230	355	15	665	0	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		6.0			4.0			6.0				
Lane Util. Factor		1.00			0.95			0.95				
Frt		0.87			0.91			1.00				
Flt Protected		1.00			1.00			1.00				
Satd. Flow (prot)		1651			3229			3404				
Flt Permitted		1.00			1.00			0.68				
Satd. Flow (perm)		1651			3229			2310				
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	22	0	321	0	250	386	16	723	0	0	0	
RTOR Reduction (vph)	0	0	0	0	116	0	0	0	0	0	0	
Lane Group Flow (vph)	0	343	0	0	520	0	0	739	0	0	0	
Heavy Vehicles (%)	3%	0%	0%	0%	1%	2%	3%	6%	0%	0%	0%	
Turn Type	Prot	Prot			NA		Perm	NA				
Protected Phases	10	10			17 16			6				
Permitted Phases							6					
Actuated Green, G (s)		17.0			63.0			32.0				
Effective Green, g (s)		17.0			63.0			32.0				
Actuated g/C Ratio		0.19			0.70			0.36				
Clearance Time (s)		6.0						6.0				
Vehicle Extension (s)		3.0						3.0				
Lane Grp Cap (vph)		311			2260			821				
v/s Ratio Prot		c0.21			c0.16							
v/s Ratio Perm								c0.32				
v/c Ratio		1.10			0.23			0.90				
Uniform Delay, d1		36.5			4.8			27.5				
Progression Factor		1.00			0.00			1.00				
Incremental Delay, d2		81.5			0.0			14.9				
Delay (s)		118.0			0.0			42.3				
Level of Service		F			А			D				
Approach Delay (s)		118.0			0.0			42.3		0.0		
Approach LOS		F			А			D		А		
Intersection Summary												
HCM 2000 Control Delay			41.8	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	y ratio		0.96									
Actuated Cycle Length (s)			90.0	S	um of lost	time (s)			34.0			
Intersection Capacity Utilizatio	n		58.5%		CU Level o				В			
Analysis Period (min)			15									
c Critical Lane Group												

1: E 55th St & South Marginal 2034 AM Peak No Build

	۶	-	\mathbf{i}	4	←	*	1	1	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4î b			<u></u>	
Volume (vph)	25	10	20	145	3	135	15	425	170	170	735	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		14.0			14.0			14.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frt		0.95			0.94			0.96			0.99	
Flt Protected		0.98			0.97			1.00			0.99	
Satd. Flow (prot)		1758			1658			3293			3373	
Flt Permitted		0.73			0.81			0.73			0.69	
Satd. Flow (perm)		1318			1373			2421			2342	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	27	11	22	158	3	147	16	462	185	185	799	60
RTOR Reduction (vph)	0	18	0	0	37	0	0	0	0	0	5	0
Lane Group Flow (vph)	0	42	0	0	271	0	0	663	0	0	1039	0
Heavy Vehicles (%)	1%	0%	0%	6%	0%	3%	7%	2%	12%	7%	5%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		12			12			1			6 14	
Permitted Phases	12			12			1			614		
Actuated Green, G (s)		15.0			15.0			24.0			57.0	
Effective Green, g (s)		15.0			15.0			24.0			57.0	
Actuated g/C Ratio		0.17			0.17			0.27			0.63	
Clearance Time (s)		14.0			14.0			14.0				
Vehicle Extension (s)		3.0			3.0			3.0				
Lane Grp Cap (vph)		219			228			645			1483	
v/s Ratio Prot												
v/s Ratio Perm		0.03			c0.20			0.27			c0.44	
v/c Ratio		0.19			1.19			1.03			0.70	
Uniform Delay, d1		32.3			37.5			33.0			10.9	
Progression Factor		1.00			1.00			1.00			0.16	
Incremental Delay, d2		0.4			120.6			42.8			0.5	
Delay (s)		32.7			158.1			75.8			2.2	
Level of Service		С			F			E			А	
Approach Delay (s)		32.7			158.1			75.8			2.2	
Approach LOS		С			F			E			А	
Intersection Summary												
HCM 2000 Control Delay			49.7	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		1.03									
Actuated Cycle Length (s)			90.0		um of losi				34.0			
Intersection Capacity Utilizat	tion		94.9%	IC	CU Level	of Service	•		F			
Analysis Period (min)			15									
a Critical Lana Crown												

	٦	\mathbf{i}	1	1	ţ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			-¢†	<u>ቀ</u> ኑ		
Volume (veh/h)	15	40	65	250	650	175	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	16	43	71	272	707	190	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)				415			
pX, platoon unblocked							
vC, conflicting volume	1079	448	897				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1079	448	897				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	92	92	91				
cM capacity (veh/h)	196	563	765				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	60	161	181	471	426		
Volume Left	16	71	0	0	0		
Volume Right	43	0	0	0	190		
cSH	373	765	1700	1700	1700		
Volume to Capacity	0.16	0.09	0.11	0.28	0.25		
Queue Length 95th (ft)	14	8	0	0	0		
Control Delay (s)	16.5	5.0	0.0	0.0	0.0		
Lane LOS	С	А					
Approach Delay (s)	16.5	2.4		0.0			
Approach LOS	С						
Intersection Summary							
Average Delay			1.4				
Intersection Capacity Utilization	ation		45.7%	IC	CU Level c	of Service	
Analysis Period (min)			15				
J							

2: E. 55th Street & I-90 East Exit & I-90 East Entrance 2034 PM - No Build

	۶	_	•	1	1	۲	¥	ţ	~	4	~	
Movement	EBL2	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	SWL	SWR	
Lane Configurations		¥.			A							
Volume (vph)	55	0	155	0	260	730	30	660	0	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		6.0			4.0			6.0				
Lane Util. Factor		1.00			0.95			0.95				
Frt		0.90			0.89			1.00				
Flt Protected		0.99			1.00			1.00				
Satd. Flow (prot)		1676			3156			3402				
Flt Permitted		0.99			1.00			0.61				
Satd. Flow (perm)		1676			3156			2080				
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	60	0	168	0	283	793	33	717	0	0	0	
RTOR Reduction (vph)	0	0	0	0	229	0	0	0	0	0	0	
Lane Group Flow (vph)	0	228	0	0	847	0	0	750	0	0	0	
Heavy Vehicles (%)	3%	0%	0%	0%	1%	2%	3%	6%	0%	0%	0%	
Turn Type	Prot	Prot			NA		Perm	NA				
Protected Phases	10	10			17 16			6				
Permitted Phases							6					
Actuated Green, G (s)		16.0			64.0			39.0				
Effective Green, g (s)		16.0			64.0			39.0				
Actuated g/C Ratio		0.18			0.71			0.43				
Clearance Time (s)		6.0						6.0				
Vehicle Extension (s)		3.0						3.0				
Lane Grp Cap (vph)		297			2244			901				
v/s Ratio Prot		c0.14			c0.27							
v/s Ratio Perm								c0.36				
v/c Ratio		0.77			0.38			0.83				
Uniform Delay, d1		35.2			5.1			22.6				
Progression Factor		1.00			0.37			1.00				
Incremental Delay, d2		17.2			0.1			8.9				
Delay (s)		52.4			2.0			31.5				
Level of Service		D			А			С				
Approach Delay (s)		52.4			2.0			31.5		0.0		
Approach LOS		D			А			С		А		
Intersection Summary												
HCM 2000 Control Delay			18.3	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.94									
Actuated Cycle Length (s)			90.0	S	um of lost	time (s)			34.0			
Intersection Capacity Utilization	ı		62.9%		CU Level o				В			
Analysis Period (min)			15									
c Critical Lane Group												

1: E. 55th Street & South Marginal 2034 PM - No Build

	≯	-	\mathbf{r}	4	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			ፋት			- † †	
Volume (vph)	80	0	10	35	5	40	20	870	20	15	750	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		14.0			14.0			14.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frt		0.98			0.93			1.00			0.99	
Flt Protected		0.96			0.98			1.00			1.00	
Satd. Flow (prot)		1776			1664			3512			3408	
Flt Permitted		0.69			0.81			0.89			0.93	
Satd. Flow (perm)		1279			1380			3135			3171	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	87	0	11	38	5	43	22	946	22	16	815	54
RTOR Reduction (vph)	0	88	0	0	39	0	0	0	0	0	5	0
Lane Group Flow (vph)	0	10	0	0	47	0	0	990	0	0	880	0
Heavy Vehicles (%)	1%	0%	0%	6%	0%	3%	7%	2%	12%	7%	5%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		12			12			1			6 14	
Permitted Phases	12			12			1			6 14		
Actuated Green, G (s)		9.0			9.0			31.0			63.0	
Effective Green, g (s)		9.0			9.0			31.0			63.0	
Actuated g/C Ratio		0.10			0.10			0.34			0.70	
Clearance Time (s)		14.0			14.0			14.0				
Vehicle Extension (s)		3.0			3.0			3.0				
Lane Grp Cap (vph)		127			138			1079			2219	
v/s Ratio Prot												
v/s Ratio Perm		0.01			c0.03			c0.32			c0.28	
v/c Ratio		0.08			0.34			0.92			0.40	
Uniform Delay, d1		36.7			37.7			28.3			5.6	
Progression Factor		1.00			1.00			1.00			0.08	
Incremental Delay, d2		0.3			1.5			13.6			0.1	
Delay (s)		37.0			39.2			41.9			0.5	
Level of Service		D			D			D			А	
Approach Delay (s)		37.0			39.2			41.9			0.5	
Approach LOS		D			D			D			А	
Intersection Summary												
HCM 2000 Control Delay			23.8	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity	y ratio		0.71									
Actuated Cycle Length (s)			90.0	S	um of losi	t time (s)			34.0			
Intersection Capacity Utilizatio	n		71.6%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

7: E 55th St & I-90 EB Off Ramp/Goddard Way 2034 AM Build (EB Ramp Reconfiguration)

	۶	-	\mathbf{F}	∢	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		4			∱1 ≽				
Volume (vph)	20	55	240	150	0	135	0	450	180	115	550	0
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0		5.0			5.0			5.0	
Lane Util. Factor		1.00	1.00		1.00			0.95			0.95	
Frt		1.00	0.85		0.94			0.96			1.00	
Flt Protected		0.99	1.00		0.97			1.00			0.99	
Satd. Flow (prot)		1820	1568		1699			3387			3509	
Flt Permitted		0.89	1.00		0.79			1.00			0.59	
Satd. Flow (perm)		1641	1568		1380			3387			2087	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	22	60	261	163	0	147	0	489	196	125	598	0
RTOR Reduction (vph)	0	0	189	0	105	0	0	47	0	0	0	0
Lane Group Flow (vph)	0	82	73	0	205	0	0	638	0	0	723	0
Heavy Vehicles (%)	3%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA	Perm	Perm	NA			NA		pm+pt	NA	
Protected Phases		4			8			2 10		1	6	
Permitted Phases	4		4	8						6		
Actuated Green, G (s)		25.0	25.0		25.0			41.0			35.0	
Effective Green, g (s)		25.0	25.0		25.0			41.0			35.0	
Actuated g/C Ratio		0.28	0.28		0.28			0.46			0.39	
Clearance Time (s)		5.0	5.0		5.0						5.0	
Lane Grp Cap (vph)		455	435		383			1542			874	
v/s Ratio Prot								c0.19			c0.04	
v/s Ratio Perm		0.05	0.05		c0.15						c0.28	
v/c Ratio		0.18	0.17		0.54			0.41			0.83	
Uniform Delay, d1		24.7	24.6		27.6			16.4			24.8	
Progression Factor		1.00	1.00		1.00			0.12			1.00	
Incremental Delay, d2		0.9	0.8		5.3			0.6			8.9	
Delay (s)		25.6	25.4		32.9			2.5			33.6	
Level of Service		С	С		С			А			С	
Approach Delay (s)		25.5			32.9			2.5			33.6	
Approach LOS		С			С			А			С	
Intersection Summary												
HCM 2000 Control Delay			21.8	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacit	y ratio		0.68									
Actuated Cycle Length (s)			90.0		um of lost				20.0			
Intersection Capacity Utilizatio	n		72.5%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

10: E 55th St & S Marginal Rd 2034 AM Build (EB Ramp Reconfiguration)

	٦	\mathbf{r}	•	Ť	Ļ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	۲			41	¢β			
Volume (vph)	35	20	15	595	880	60		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0			5.0	5.0			
Lane Util. Factor	1.00			0.95	0.95			
Frt	0.95			1.00	0.99			
-It Protected	0.97			1.00	1.00			
Satd. Flow (prot)	1716			3535	3505			
Flt Permitted	0.97			0.91	1.00			
Satd. Flow (perm)	1716			3236	3505			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	38	22	16	647	957	65		
RTOR Reduction (vph)	18	0	0	0	6	0		
ane Group Flow (vph)	42	0	0	663	1016	0		
Turn Type	Prot	v	Perm	NA	NA			
Protected Phases	13			2	68			
Permitted Phases	10		2	2	00			
Actuated Green, G (s)	15.0		-	26.0	65.0			
Effective Green, g (s)	15.0			26.0	65.0			
Actuated g/C Ratio	0.17			0.29	0.72			
Clearance Time (s)	5.0			5.0	<u> </u>			
ane Grp Cap (vph)	286			934	2531			
/s Ratio Prot	c0.02			504	c0.29			
//s Ratio Perm	00.02			c0.20	00.20			
//c Ratio	0.15			0.71	0.40			
Uniform Delay, d1	32.0			28.6	4.9			
Progression Factor	1.00			1.00	0.25			
Incremental Delay, d2	1.1			4.6	0.3			
Delay (s)	33.1			33.2	1.5			
Level of Service	C			C	A			
Approach Delay (s)	33.1			33.2	1.5			
Approach LOS	C			C	A			
ntersection Summary								
HCM 2000 Control Delay			14.7	H	CM 2000	Level of Service		В
HCM 2000 Volume to Cap	acity ratio		0.49					
Actuated Cycle Length (s)			90.0	Si	um of lost	time (s)	20	0.0
Intersection Capacity Utiliz			38.9%			of Service		А
Analysis Period (min)			15					
c Critical Lane Group								

7: E 55th St & I-90 EB Off Ramp/Goddard Way 2034 PM Build (EB Ramp Reconfiguration)

	۶	-	\mathbf{F}	∢	+	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		4			∱1 ≽			-4↑	
Volume (vph)	55	5	150	40	0	40	0	970	20	15	650	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0		5.0			5.0			5.0	
Lane Util. Factor		1.00	1.00		1.00			0.95			0.95	
Frt		1.00	0.85		0.93			1.00			1.00	
Flt Protected		0.96	1.00		0.98			1.00			1.00	
Satd. Flow (prot)		1763	1568		1695			3528			3535	
Flt Permitted		0.75	1.00		0.84			1.00			0.70	
Satd. Flow (perm)		1382	1568		1456			3528			2478	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	60	5	163	43	0	43	0	1054	22	16	707	0
RTOR Reduction (vph)	0	0	127	0	66	0	0	2	0	0	0	0
Lane Group Flow (vph)	0	65	36	0	20	0	0	1074	0	0	723	0
Heavy Vehicles (%)	3%	3%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type F	Perm	NA	Perm	Perm	NA			NA		Perm	NA	
Protected Phases		4			8			2 10			6	
Permitted Phases	4		4	8						6		
Actuated Green, G (s)		20.0	20.0		20.0			60.0			35.0	
Effective Green, g (s)		20.0	20.0		20.0			60.0			35.0	
Actuated g/C Ratio		0.22	0.22		0.22			0.67			0.39	
Clearance Time (s)		5.0	5.0		5.0						5.0	
Lane Grp Cap (vph)		307	348		323			2352			963	
v/s Ratio Prot								c0.30				
v/s Ratio Perm		c0.05	0.02		0.01						c0.29	
v/c Ratio		0.21	0.10		0.06			0.46			0.75	
Uniform Delay, d1		28.6	27.9		27.6			7.2			23.7	
Progression Factor		1.00	1.00		1.00			0.22			1.00	
Incremental Delay, d2		1.6	0.6		0.4			0.4			5.4	
Delay (s)		30.1	28.5		28.0			2.0			29.1	
Level of Service		С	С		С			А			С	
Approach Delay (s)		28.9			28.0			2.0			29.1	
Approach LOS		С			С			А			С	
Intersection Summary												
HCM 2000 Control Delay			15.2	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity ra	atio		0.54									
Actuated Cycle Length (s)			90.0	S	um of lost	time (s)			15.0			
Intersection Capacity Utilization			48.4%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									
c Critical Lane Group												

10: E 55th St & S Marginal Rd 2034 PM Build (EB Ramp Reconfiguration)

	≯	\mathbf{r}	•	1	ţ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y				A			
Volume (vph)	80	10	20	890	785	55		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0			5.0	5.0			
Lane Util. Factor	1.00			0.95	0.95			
Frt	0.98			1.00	0.99			
Flt Protected	0.96			1.00	1.00			
Satd. Flow (prot)	1757			3535	3504			
Flt Permitted	0.96			0.92	1.00			
Satd. Flow (perm)	1757			3254	3504			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	87	11	22	967	853	60		
RTOR Reduction (vph)	5	0	0	0	6	0		
Lane Group Flow (vph)	93	0	0	989	907	0		
Turn Type	Prot		Perm	NA	NA			
Protected Phases	13			2	6 8			
Permitted Phases			2	_				
Actuated Green, G (s)	20.0			35.0	60.0			
Effective Green, g (s)	20.0			35.0	60.0			
Actuated g/C Ratio	0.22			0.39	0.67			
Clearance Time (s)	5.0			5.0				
Lane Grp Cap (vph)	390			1265	2336			
v/s Ratio Prot	c0.05				c0.26			
v/s Ratio Perm				c0.30				
v/c Ratio	0.24			0.78	0.39			
Uniform Delay, d1	28.7			24.1	6.7			
Progression Factor	1.00			1.00	0.14			
Incremental Delay, d2	1.4			4.9	0.4			
Delay (s)	30.2			29.0	1.3			
Level of Service	С			С	A			
Approach Delay (s)	30.2			29.0	1.3			
Approach LOS	С			С	A			
Intersection Summary								
HCM 2000 Control Delay			16.4	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capa	acity ratio		0.54					
Actuated Cycle Length (s)			90.0		um of lost	()	15.0	
Intersection Capacity Utilization	ation		52.3%	IC	U Level c	of Service	А	
Analysis Period (min)			15					
 Critical Lana Group 								

c Critical Lane Group

			CONTRO							
General Information			Site Ir	nformati	on					
Analyst	MLS		Interse	ection		IR-90 WE Marginal	8 Ramps	& N		
Agency/Co.	LJB Inc.		Jurisdi	ction		ODOT District 12				
Date Performed	3/2/2015	11		is Year		2034 Exis		dition		
Analysis Time Period	AM Peak	Hour								
	Y-90-19.5/21.3									
East/West Street:					et: IR-90 V	VB Ramps				
Intersection Orientation:	East-West		Study F	Study Period (hrs): 0.25						
Vehicle Volumes an	d Adjustme									
Major Street		Eastbound				Westbou	nd			
Movement	1	2	3		4	5		6		
	L	T 105	R		L	T		R		
Volume (veh/h) Peak-Hour Factor, PHF	1.00	105 0.92	0		50 0.92	95 0.92		1.00		
Hourly Flow Rate, HFR										
(veh/h)	0	114	0		54	103		0		
Percent Heavy Vehicles	0			2						
Median Type				Undivideo	d					
RT Channelized			0					0		
Lanes	0	2	0		0	2		0		
Configuration		Т	TR		LT	Т				
Upstream Signal		0				0				
Minor Street		Northbound				Southbou	ind			
Movement	7	8	9		10	11		12		
	L	Т	R		L	Т		R		
Volume (veh/h)		550	190							
Peak-Hour Factor, PHF	1.00	0.92	0.92		1.00	1.00		1.00		
Hourly Flow Rate, HFR (veh/h)	0	597	206	0		0		0		
Percent Heavy Vehicles	0	4	4		0	0		0		
Percent Grade (%)		0				0				
Flared Approach		N				N				
Storage		0				0				
RT Channelized			0					0		
Lanes	0	2	1		0	0		0		
Configuration		Т	R							
Delay, Queue Length, a	nd Level of Se	rvice								
Approach	Eastbound	Westbound	1	Northbound	ł	S	outhbou	nd		
Movement	1	4	7	8	9	10	11	12		
Lane Configuration		LT		Т	R					
v (veh/h)		54		597	206					
C (m) (veh/h)		1473		565	1002					
v/c		0.04		1.06	0.21					
95% queue length		0.11		17.10	0.27	1				
Control Delay (s/veh)		7.5		80.6	9.5					
		7.5 A		50.0 F	9.5 A	+				
LOS					А					
Approach Delay (s/veh)				62.4 F						
Approach LOS										

HCS+TM Version 5.6

Generated: 6/22/2015 12:52 PM

				-					
General Information	1		Site I	nformati	on				
Analyst	MLS		Interse	ection		IR-90 WB Marginal	Ramps	& N	
Agency/Co.	LJB Inc.		Jurisdi	ction		ODOT District 12			
Date Performed	3/2/2015	1.1	Analys	is Year		2034 Exis	ting Con	dition	
Analysis Time Period	PM Peak I	Hour							
	Y-90-19.5/21.3								
East/West Street:	5 () 1 / (et: IR-90 V	VB Ramps			
ntersection Orientation:	East-West		Study I	Period (hrs): 0.25				
Vehicle Volumes an	d Adjustmer								
Major Street		Eastbound	1 ^		4	Westbou	nd		
Movement	1 L	2 T	3 R		4	5 T		6 R	
(Jolumo (Joh/h)		115	0 R		150	105		ĸ	
Volume (veh/h) Peak-Hour Factor, PHF	1.00	0.92	0.92		0.92	0.92		1.00	
Hourly Flow Rate, HFR			0.92						
veh/h)	0	0 124			163	114		0	
Percent Heavy Vehicles	0			-					
Median Type		_	-	Undivide	d	· · · · · ·			
RT Channelized			0			2		0	
_anes	0	2	0		0			0	
Configuration		Т	TR		LT	Т			
Jpstream Signal		0				0			
Minor Street		Northbound	1			Southbou	nd		
Movement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
Volume (veh/h)		570	190						
Peak-Hour Factor, PHF	1.00	0.92	0.92		1.00	1.00		1.00	
Hourly Flow Rate, HFR (veh/h)	0	619	206		0	0		0	
Percent Heavy Vehicles	0	4	4		0	0		0	
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0					0	
Lanes	0	2	1		0	0		0	
Configuration		Т	R						
Delay, Queue Length, a	nd Level of Ser	vice							
Approach	Eastbound	Westbound		Northbound	d	S	outhbour	nd	
Vovement	1	4	7	8	9	10	11	12	
ane Configuration		LT		Т	R			1	
/ (veh/h)		163		619	206				
C (m) (veh/h)		1461		381	995			1	
//c		0.11		1.62	0.21				
95% queue length		0.38		36.17	0.21				
Control Delay (s/veh)		7.8		318.3	9.6				
_OS		A		F	A				
Approach Delay (s/veh)				241.2					
Approach LOS				F					

HCS+TM Version 5.6

Generated: 6/22/2015 12:53 PM

	TW	O-WAY STOP	CONTR	OL SU	JMN	IARY					
General Information	า		Site Ir	nform	atio	n					
Analyst	MLS		Interse	ction			IR-90 WB	Off Ram	o & MLK		
Agency/Co.	LJB Inc.		Jurisdi	Jurisdiction				ODOT District 12			
Date Performed	3/2/2015		Analys	Analysis Year 2034 Existing Condition							
Analysis Time Period	AM Peak	Hour									
Project Description CL			•								
East/West Street: IR-90	ast/West Street: IR-90 WB Off Ramp				treet	: Martin L	uther King	Jr Dr			
ntersection Orientation:	East-West		Study Period (hrs): 0.25								
Vehicle Volumes ar	nd Adiustme	nts									
Major Street	,	Eastbound				Westbou	nd				
Movement	1	2	3			4	5		6		
	L	Т	R			L	Т		R		
/olume (veh/h)						1100			100		
Peak-Hour Factor, PHF	1.00	1.00	1.00			0.92	0.92		0.92		
Hourly Flow Rate, HFR veh/h)	0	0	0			1195	0		108		
Percent Heavy Vehicles	0					4					
Median Type	1	-	*	Undivided							
RT Channelized			0						0		
anes	0	0	0			0	0		0		
Configuration		-				LTR	LR				
Jpstream Signal		0					0				
Minor Street		Northbound		<u> </u>			Southbou	ind			
Novement	7	8	9			10	11		12		
	L	Т	R			L	Т		R		
/olume (veh/h)		120					100				
Peak-Hour Factor, PHF	1.00	0.92	1.00			1.00	0.92		1.00		
lourly Flow Rate, HFR veh/h)	0	130	0	0		0	108		0		
Percent Heavy Vehicles	0	2	0		0		2		0		
Percent Grade (%)		0					0	B			
-lared Approach		N	1				N				
Storage		0	1				0				
RT Channelized		Ť	0				Ť	<u> </u>	0		
Lanes	0	1	0			0	1		0		
Configuration		/ 				0	T		U		
Delay, Queue Length, a	nd Level of So	-					1 '	1			
Approach	Eastbound	Westbound	1	Northbo	ound		s	outhboun	d		
Vovement	1	4	7	8		9	10	11	12		
ane Configuration	•	LTR	•	T		<u> </u>		T	+		
/ (veh/h)		1195		130				, 108			
C (m) (veh/h)		1610	7				8				
//C		0.74	18.57				13.50	1			
95% queue length		7.54	18.07				15.17				
Control Delay (s/veh)		13.4	8937			6530					
LOS		В		F				F	1		
Approach Delay (s/veh)				8937	7			6530			
Approach LOS			F			F					

HCS+TM Version 5.6

Generated: 6/22/2015 11:45 AM

	1 VV	O-WAY STOP	CUNTRO	JL 301						
General Informatior	า		Site Ir	nforma	tion					
Analyst	MLS		Interse	ction		IR-90 WE	Off Ramp	& MLK		
Agency/Co.	LJB Inc.		Jurisdi	ction		ODOT District 12				
Date Performed	3/2/2015		Analys	Analysis Year 2034 Existi						
Analysis Time Period	PM Peak	Hour								
Project Description CL	JY-90-19.5/21.3	}	•							
East/West Street: IR-90	ast/West Street: IR-90 WB Off Ramp			South Str	eet: Martin	Luther King	Jr Dr			
ntersection Orientation:	East-West		Study F	udy Period (hrs): 0.25						
Vehicle Volumes ar	nd Adiustme	nts								
Major Street		Eastbound		1		Westbou	nd			
Movement	1	2	3		4	5		6		
	L	Т	R		L	Т		R		
/olume (veh/h)					445			75		
Peak-Hour Factor, PHF	1.00	1.00	1.00		0.92	0.92		0.92		
Hourly Flow Rate, HFR (veh/h)	0	0	0		483	0		81		
Percent Heavy Vehicles	0				4		<u>+</u> +			
Vedian Type			•	Undivid	led					
RT Channelized			0					0		
anes	0	0	0		0	0		0		
Configuration	onfiguration				LTR	LR		•		
Upstream Signal		0				0				
Minor Street		Northbound				Southbou	und I			
Novement	7	8	9		10	11		12		
	Ĺ	Т	R		L	T		R		
/olume (veh/h)	<u> </u>	75				130		IX .		
Peak-Hour Factor, PHF	1.00	0.92	1.00		1.00	0.92		1.00		
Hourly Flow Rate, HFR										
veh/h)	0	81	0	0		141		0		
Percent Heavy Vehicles	0	2	0		0	2		0		
Percent Grade (%)		0				0				
-lared Approach		N				N				
Storage		0				0				
RT Channelized		-	0			-		0		
Lanes	0	1	0		0	1		0		
Configuration	Ť	T	Ť		•	T		0		
Delay, Queue Length, a		-				,				
Approach	Eastbound	Westbound	1	Vorthbou	ind	S	outhbound	1		
Vovement	1	4	7	8	9	10	11	12		
ane Configuration	i	LTR	'	T			T	+ '-		
/ (veh/h)		483		81			141			
			160		+					
C (m) (veh/h)		1610				+	169			
//c		0.30	0.51			0.83				
95% queue length		1.27	2.46			5.73				
Control Delay (s/veh)		8.2	48.6			85.9				
00		А	E		F					
<u>_</u> OS										
₋OS Approach Delay (s/veh)				48.6			, 85.9			

HCS+TM Version 5.6

Generated: 6/22/2015 11:45 AM

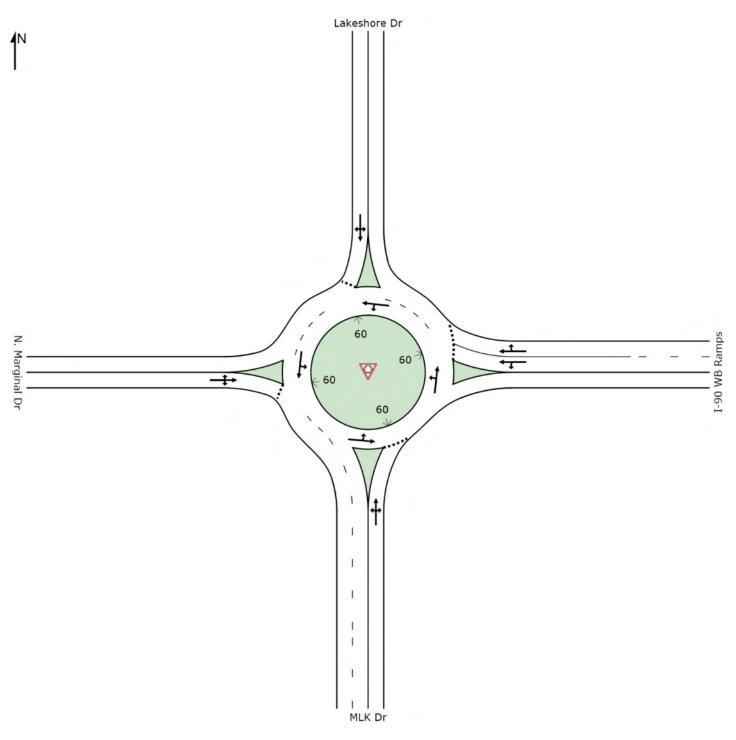
2: MLK Jr Dr & N Marginal Rd 2034 AM No Build

	۶	\mathbf{r}	1	1	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			††	A	
Volume (veh/h)	20	20	20	470	1180	20
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	22	22	511	1283	22
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)				857		
pX, platoon unblocked						
vC, conflicting volume	1592	652	1304			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1592	652	1304			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	77	95	96			
cM capacity (veh/h)	94	410	527			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	43	192	341		449	
	43 22	192 22		855		
Volume Left	22		0	0	0 22	
Volume Right		0	0	0		
cSH Values to Consolity	153	527	1700	1700	1700	
Volume to Capacity	0.28	0.04	0.20	0.50	0.26	
Queue Length 95th (ft)	28	3	0	0	0	
Control Delay (s)	37.7	1.9	0.0	0.0	0.0	
Lane LOS	E	A		0.0		
Approach Delay (s)	37.7	0.7		0.0		
Approach LOS	E					
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Utiliz	ation		43.3%	IC	CU Level c	of Service
Analysis Period (min)			15			

2: MLK Jr Dr & N Marginal Rd 2034 PM No Build

	٦	$\mathbf{\hat{z}}$	•	1	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			† †	A	
Volume (veh/h)	20	20	20	575	555	20
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	22	22	625	603	22
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)				857		
pX, platoon unblocked						
vC, conflicting volume	970	312	625			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	970	312	625			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	91	97	98			
cM capacity (veh/h)	245	683	952			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	43	230	417	402	223	
Volume Left	22	22	0	0	0	
Volume Right	22	0	0	0	22	
cSH	361	952	1700	1700	1700	
Volume to Capacity	0.12	0.02	0.25	0.24	0.13	
Queue Length 95th (ft)	10	2	0	0	0	
Control Delay (s)	16.3	1.0	0.0	0.0	0.0	
Lane LOS	С	А				
Approach Delay (s)	16.3	0.4		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utilization	ation		40.4%	IC	CU Level c	f Service
Analysis Period (min)			15			

3: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp 2034 AM No Build


	≯	-	$\mathbf{\hat{z}}$	4	+	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		1					≜ ⊅				
Volume (veh/h)	35	0	590	0	0	0	0	455	605	15	1180	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	0	641	0	0	0	0	495	658	16	1283	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								504				
pX, platoon unblocked												
vC, conflicting volume	1563	2467	641	2139	2139	576	1283			1152		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1563	2467	641	2139	2139	576	1283			1152		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	49	100	0	0	100	100	100			97		
cM capacity (veh/h)	74	29	417	0	47	460	537			602		
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	SB 1	SB 2						
Volume Total	38	641	330	822	444	855						
Volume Left	38	0	0	0	16	000						
Volume Right	0	641	0	658	0	0						
cSH	74	417	1700	1700	602	1700						
Volume to Capacity	0.51	1.54	0.19	0.48	0.03	0.50						
Queue Length 95th (ft)	54	873	0.10	0.10	2	0.00						
Control Delay (s)	96.5	277.9	0.0	0.0	0.8	0.0						
Lane LOS	F	277.0 F	0.0	0.0	A	0.0						
Approach Delay (s)	267.7	•	0.0		0.3							
Approach LOS	F		0.0		0.0							
Intersection Summary												
Average Delay			58.2									
Intersection Capacity Utiliz	ation		76.3%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

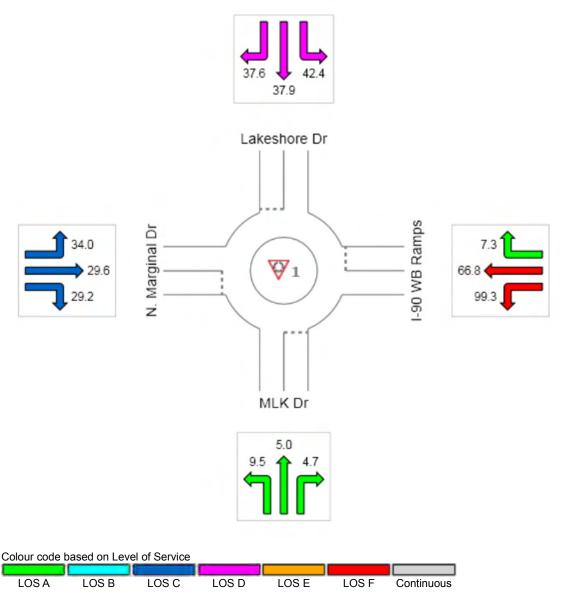
3: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp 2034 PM No Build

	٦	-	\mathbf{F}	∢	+	×.	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		1					≜1 ≱			-4 †	
Volume (veh/h)	45	0	500	0	0	0	0	550	1255	30	545	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	49	0	543	0	0	0	0	598	1364	33	592	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								504				
pX, platoon unblocked												
vC, conflicting volume	957	2620	296	2185	1938	981	592			1962		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	957	2620	296	2185	1938	981	592			1962		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	75	100	22	100	100	100	100			89		
cM capacity (veh/h)	194	21	700	5	58	249	979			293		
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	SB 1	SB 2						
Volume Total	49	543	399	1563	230	395						
Volume Left	49	0	0	0	33	0						
Volume Right	0	543	0	1364	0	0						
cSH	194	700	1700	1700	293	1700						
Volume to Capacity	0.25	0.78	0.23	0.92	0.11	0.23						
Queue Length 95th (ft)	24	188	0	0	9	0						
Control Delay (s)	29.7	25.6	0.0	0.0	4.7	0.0						
Lane LOS	D	D			А							
Approach Delay (s)	25.9		0.0		1.7							
Approach LOS	D											
Intersection Summary												
Average Delay			5.2									_
Intersection Capacity Utiliza	tion		65.7%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

SITE LAYOUT V Site: MLK @ N.Marginal/Lakeshore

Option 1 - (AM Peak) Roundabout

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

V Site: MLK @ N.Marginal/Lakeshore

Option 1 - (AM Peak) Roundabout

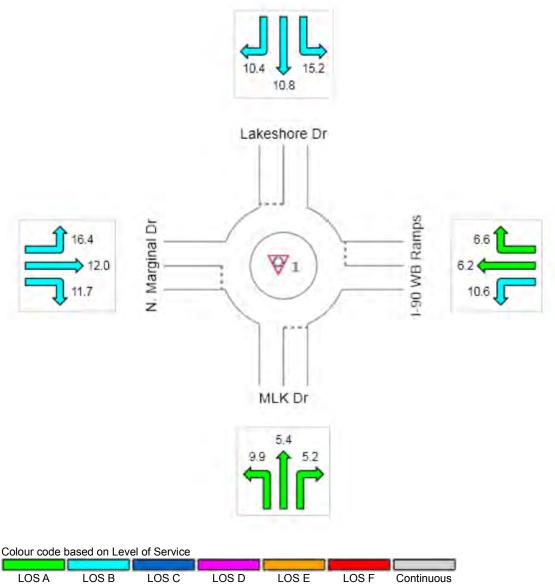
All Movement Classes

	South	East	North	West	Intersection
	5.0	89.2	37.9	30.2	63.0
LOS	Α	F	D	С	E

Level of Service Method: Delay & v/c (HCM 2010)

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Roundabout Level of Service Method: SIDRA Roundabout LOS SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

₩ Site: MLK @ N.Marginal/Lakeshore - PM

Option 1 - (PM Peak) Roundabout

All Movement Classes

		South	East	North	West	Intersection
		5.3	9.3	10.7	12.5	8.4
Γ	LOS	Α	А	В	В	Α

Level of Service Method: Delay & v/c (HCM 2010)

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Roundabout Level of Service Method: SIDRA Roundabout LOS SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY ♥ Site: MLK @ N.Marginal/Lakeshore

Option 1 - (AM Peak) Roundabout

Lane Use and Performance													
	Demand F Total veh/h	Flows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back c Veh	of Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: MLK [
Lane 1 ^d	533	3.0	1077	0.495	100	5.0	LOS A	4.9	125.9	Full	350	0.0	0.0
Approach	533	3.0		0.495		5.0	LOS A	4.9	125.9				
East: I-90 WB Ramps													
Lane 1 ^d	1292	3.0	1098	1.177	100	99.0	LOS F	95.2	2436.6	Full	1000	0.0	<mark>47.7</mark>
Lane 2	154	3.0	649	0.237	20 ⁶	7.3	LOS A	1.3	32.4	Full	1000	0.0	0.0
Approach	1446	3.0		1.177		89.2	LOS F	95.2	2436.6				
North: Lakes	hore Dr												
Lane 1 ^d	132	3.0	219	0.601	100	37.9	LOS D	4.9	124.3	Full	500	0.0	0.0
Approach	132	3.0		0.601		37.9	LOS D	4.9	124.3				
West: N. Mar	rginal Dr												
Lane 1 ^d	110	3.0	215	0.511	100	30.2	LOS C	3.8	97.6	Full	1000	0.0	0.0
Approach	110	3.0		0.511		30.2	LOS C	3.8	97.6				
Intersection	2220	3.0		1.177		63.0	LOS E	95.2	2436.6				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: SIDRA Roundabout LOS.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

6 Lane under-utilisation due to downstream effects

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LJB INC | Processed: Monday, June 29, 2015 9:35:25 AM Project: Q:\ODOT_OP\0109946A.00 - VAR-STW-Safety Studies PID 97542, 2015\03 District 12\02 CUY 90\Tools\SIDRA\Option1.sip6

LANE SUMMARY

₩ Site: MLK @ N.Marginal/Lakeshore - PM

Option 1 - (PM Peak) Roundabout

Lane Use and Performance													
	Demand I Total	HV	Cap.	Deg. Satn	Lane Util.	Average Delay	Level of Service	95% Back of Veh	Dist	Lane Config	Lane Length	Cap. Adj.	Prob. Block.
South: MLK	veh/h Dr	%	veh/h	v/c	%	Sec	_		ft	_	ft	%	%
Lane 1 ^d	647	3.0	1045	0.619	100	5.3	LOS A	7.1	182.7	Full	350	0.0	0.0
Approach	647	3.0		0.619		5.3	LOS A	7.1	182.7				
East: I-90 WE	3 Ramps												
Lane 1 ^d	614	3.0	1122	0.548	100	9.7	LOS A	4.6	116.6	Full	1000	0.0	0.0
Lane 2	82	3.0	671	0.122	22 ⁵	6.6	LOS A	0.6	15.4	Full	1000	0.0	0.0
Approach	696	3.0		0.548		9.3	LOS A	4.6	116.6				
North: Lakes	hore Dr												
Lane 1 ^d	164	3.0	545	0.301	100	10.7	LOS B	1.8	45.7	Full	500	0.0	0.0
Approach	164	3.0		0.301		10.7	LOS B	1.8	45.7				
West: N. Mar	ginal Dr												
Lane 1 ^d	240	3.0	564	0.426	100	12.5	LOS B	2.8	72.7	Full	1000	0.0	0.0
Approach	240	3.0		0.426		12.5	LOS B	2.8	72.7				
Intersection	1747	3.0		0.619		8.4	LOS A	7.1	182.7				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: SIDRA Roundabout LOS.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

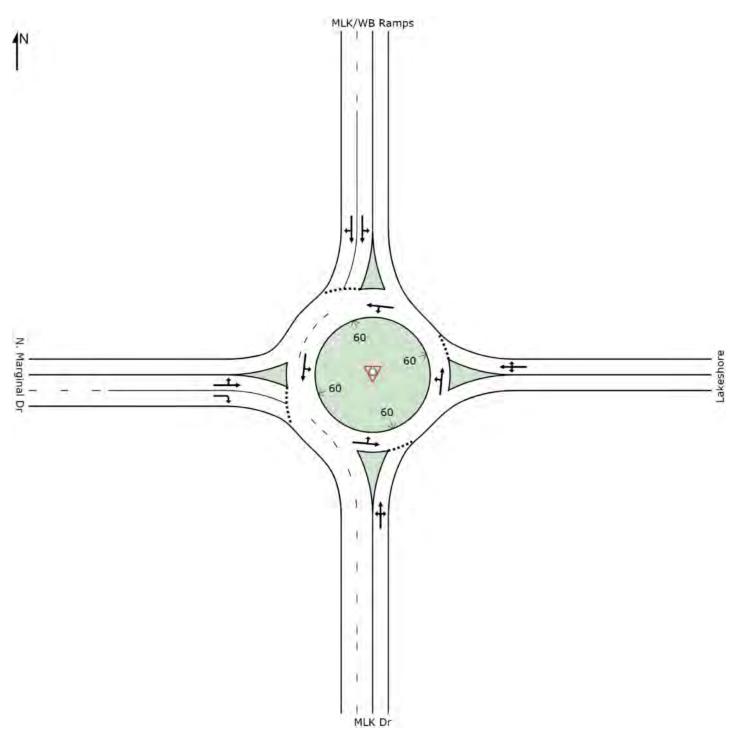
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

5 Lane under-utilisation found by the program


d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LJB INC | Processed: Monday, June 29, 2015 11:02:24 AM Project: Q:\ODOT_OP\0109946A.00 - VAR-STW-Safety Studies PID 97542, 2015\03 District 12\02 CUY 90\Tools\SIDRA\Option1.sip6

SITE LAYOUT V Site: MLK @ N.Marginal/Lakeshore

Option 2 - (AM Peak) Roundabout

LANE SUMMARY

V Site: MLK @ N.Marginal/Lakeshore

Option 2 - (AM Peak) Roundabout

Lane Use and Performance													
	Demand F Total veh/h	Flows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	f Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: MLK		/ 0			,,,							,,,	///
Lane 1 ^d	533	3.0	944	0.564	100	6.6	LOS A	4.9	124.9	Full	350	0.0	0.0
Approach	533	3.0		0.564		6.6	LOS A	4.9	124.9				
East: Lakesh	ore												
Lane 1 ^d	109	3.0	685	0.159	100	11.7	LOS B	0.9	22.1	Full	1000	0.0	0.0
Approach	109	3.0		0.159		11.7	LOS B	0.9	22.1				
North: MLK/	NB Ramps												
Lane 1	734	3.0	1142	0.642	100	6.8	LOS A	6.6	169.4	Full	500	0.0	0.0
Lane 2 ^d	734	3.0	1142	0.642	100	6.2	LOS A	6.6	169.4	Full	500	0.0	0.0
Approach	1467	3.0		0.642		6.5	LOS A	6.6	169.4				
West: N. Mar	rginal Dr												
Lane 1	23	3.0	129	0.177	100	46.5	LOS D	1.0	25.5	Full	300	0.0	0.0
Lane 2 ^d	87	3.0	227	0.382	100	36.6	LOS D	3.0	75.6	Full	1000	0.0	0.0
Approach	110	3.0		0.382		38.7	LOS D	3.0	75.6				
Intersection	2218	3.0		0.642		8.4	LOS A	6.6	169.4				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: SIDRA Roundabout LOS.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LJB INC | Processed: Monday, November 23, 2015 3:23:03 PM

Project: Q:\ODOT_OP\0109946A.00 - VAR-STW-Safety Studies PID 97542, 2015\03 District 12\02 CUY 90\Tools\SIDRA\Option2.sip6

LANE SUMMARY

𝒞 Site: MLK @ N.Marginal/Lakeshore -PM

Option 2 - (PM Peak) Roundabout

Lane Use and Performance													
	Demand F Total veh/h	Flows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	f Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: MLK		/ 0			,,,							,,,	,,,
Lane 1 ^d	647	3.0	958	0.675	100	6.9	LOS A	6.9	175.4	Full	350	0.0	0.0
Approach	647	3.0		0.675		6.9	LOS A	6.9	175.4				
East: Lakesh	ore												
Lane 1 ^d	163	3.0	563	0.289	100	14.0	LOS B	1.7	44.3	Full	1000	0.0	0.0
Approach	163	3.0		0.289		14.0	LOS B	1.7	44.3				
North: MLK/	VB Ramps												
Lane 1	358	3.0	1072	0.334	100	7.0	LOS A	2.3	58.6	Full	500	0.0	0.0
Lane 2 ^d	359	3.0	1074	0.334	100	6.0	LOS A	2.3	58.6	Full	500	0.0	0.0
Approach	717	3.0		0.334		6.5	LOS A	2.3	58.6				
West: N. Mar	ginal Dr												
Lane 1	43	3.0	365	0.119	100	16.1	LOS B	0.6	14.7	Full	300	0.0	0.0
Lane 2 ^d	196	3.0	683	0.287	100	10.1	LOS B	1.8	45.6	Full	1000	0.0	0.0
Approach	239	3.0		0.287		11.2	LOS B	1.8	45.6				
Intersection	1766	3.0		0.675		8.0	LOS A	6.9	175.4				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: SIDRA Roundabout LOS.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

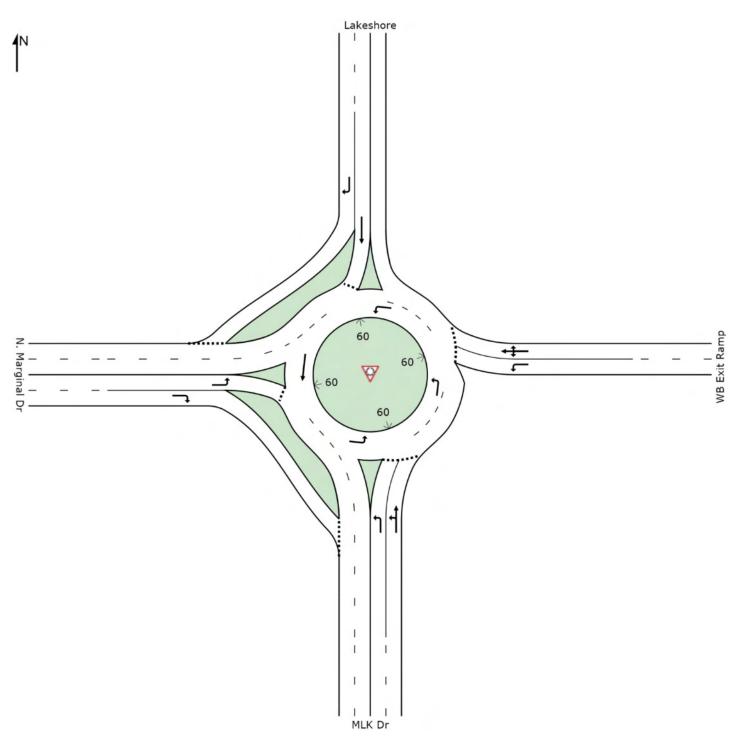
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach


SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LJB INC | Processed: Monday, November 23, 2015 3:24:20 PM

Project: Q:\ODOT_OP\0109946A.00 - VAR-STW-Safety Studies PID 97542, 2015\03 District 12\02 CUY 90\Tools\SIDRA\Option2.sip6

SITE LAYOUT

V Site: MLK @ N.Marginal/Lakeshore - PM

Option 3 - Greenway Study Option (PM Peak) Roundabout

LANE SUMMARY

V Site: MLK @ N.Marginal/Lakeshore

Option 3 - Greenway Study Option (AM Peak) Roundabout

Lane Use and Performance													
	Demand F Total veh/h	Flows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back o Veh	of Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: MLK D		/0	VEH/H	v/C	/0	360			11		11	/0	/0
Lane 1	266	3.0	1229	0.217	100	9.4	LOS A	1.5	38.9	Full	350	0.0	0.0
Lane 2 ^d	266	3.0	1229	0.217	100	7.2	LOS A	1.5	38.9	Full	350	0.0	0.0
Approach	533	3.0		0.217		8.3	LOS A	1.5	38.9				
East: WB Exit	Ramp												
Lane 1	702	3.0	746	0.941	100	38.0	LOS D	22.1	564.7	Full	1000	0.0	0.0
Lane 2 ^d	743	3.0	790	0.941	100	35.4	LOS D	22.7	582.1	Full	1000	0.0	0.0
Approach	1446	3.0		0.941		36.7	LOS D	22.7	582.1				
North: Lakesh	ore												
Lane 1 ^d	98	3.0	98	1.000 ⁴	100	90.6	LOS F	3.8	96.9	Full	500	0.0	0.0
Lane 2	11	3.0	805	0.014	100	7.3	LOS A	0.1	1.8	Full	100	0.0	0.0
Approach	109	3.0		1.000		82.3	LOS F	3.8	96.9				
West: N. Marg	jinal Dr												
Lane 1 ^d	43	3.0	236	0.184	100	28.1	LOS C	1.3	33.9	Full	1000	0.0	0.0
Lane 2	87	3.0	236	0.368	100	26.4	LOS C	2.8	71.6	Full	1000	0.0	0.0
Approach	130	3.0		0.368		26.9	LOS C	2.8	71.6				
Intersection	2217	3.0		1.000		31.5	LOS C	22.7	582.1				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: SIDRA Roundabout LOS.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

4 x = 1.00 due to minimum capacity

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LJB INC | Processed: Friday, July 31, 2015 4:35:29 PM

Project: Q:\ODOT_OP\0109946A.00 - VAR-STW-Safety Studies PID 97542, 2015\03 District 12\02 CUY 90\Tools\SIDRA\Option3-Rev.sip6

LANE SUMMARY

₩ Site: MLK @ N.Marginal/Lakeshore - PM

Option 3 - Greenway Study Option (PM Peak) Roundabout

Lane Use and Performance													
	Demand F Total	HV	Cap.	Deg. Satn	Lane Util.	Average Delay	Level of Service	95% Back o Veh	Dist	Lane Config	Lane Length	Cap. Adj.	Prob. Block.
South: MLK D	veh/h	%	veh/h	v/c	%	sec	_		ft	_	ft	%	%
	323	3.0	1234	0.262	100	9.4	LOS A	1.8	46.4	Full	350	0.0	0.0
Lane 1													
Lane 2 ^d	323	3.0	1234	0.262	100	8.3	LOS A	1.8	46.4	Full	350	0.0	0.0
Approach	647	3.0		0.262		8.9	LOS A	1.8	46.4				
East: WB Exit	Ramp												
Lane 1	374	3.0	666	0.562	100	18.7	LOS B	4.8	123.8	Full	1000	0.0	0.0
Lane 2 ^d	403	3.0	717	0.562	100	15.7	LOS B	4.9	126.7	Full	1000	0.0	0.0
Approach	777	3.0		0.562		17.2	LOS B	4.9	126.7				
North: Lakesh	ore												
Lane 1 ^d	141	3.0	321	0.440	100	29.0	LOS C	3.6	90.9	Full	500	0.0	0.0
Lane 2	22	3.0	716	0.030	100	8.7	LOS A	0.2	4.1	Full	500	0.0	0.0
Approach	163	3.0		0.440		26.3	LOS C	3.6	90.9				
West: N. Marg	jinal Dr												
Lane 1 ^d	43	3.0	642	0.068	100	13.8	LOS B	0.4	10.3	Full	1000	0.0	0.0
Lane 2	196	3.0	642	0.305	100	9.7	LOS A	2.0	51.1	Full	1000	0.0	0.0
Approach	239	3.0		0.305		10.5	LOS B	2.0	51.1				
Intersection	1826	3.0		0.562		14.2	LOS B	4.9	126.7				

Level of Service (LOS) Method: Delay & v/c (HCM 2010).

Roundabout LOS Method: SIDRA Roundabout LOS.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LJB INC | Processed: Friday, July 31, 2015 4:35:29 PM

Project: Q:\ODOT_OP\0109946A.00 - VAR-STW-Safety Studies PID 97542, 2015\03 District 12\02 CUY 90\Tools\SIDRA\Option3-Rev.sip6

3: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp 2034 AM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB Signal

	۶	-	$\mathbf{\hat{z}}$	4	+	•	٠	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$	1					∱ }		٦	<u></u>	
Volume (vph)	35	5	590	0	0	0	0	455	605	75	1180	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0		5.0	5.0	
Lane Util. Factor		0.95	0.95					0.95		1.00	0.95	
Frt		0.87	0.85					0.91		1.00	1.00	
Flt Protected		0.99	1.00					1.00		0.95	1.00	
Satd. Flow (prot)		1529	1504					3236		1770	3539	
Flt Permitted		0.99	1.00					1.00		0.17	1.00	
Satd. Flow (perm)		1529	1504					3236		322	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	38	5	641	0	0	0	0	495	658	82	1283	0
RTOR Reduction (vph)	0	27	27	0	0	0	0	322	0	0	0	0
Lane Group Flow (vph)	0	317	313	0	0	0	0	831	0	82	1283	0
Turn Type	Perm	NA	Perm					NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4		4							6		
Actuated Green, G (s)		15.1	15.1					26.2		26.2	26.2	
Effective Green, g (s)		15.1	15.1					26.2		26.2	26.2	
Actuated g/C Ratio		0.29	0.29					0.51		0.51	0.51	
Clearance Time (s)		5.0	5.0					5.0		5.0	5.0	
Vehicle Extension (s)		3.0	3.0					3.0		3.0	3.0	
Lane Grp Cap (vph)		450	442					1652		164	1807	
v/s Ratio Prot								0.26			c0.36	
v/s Ratio Perm		0.21	c0.21							0.25		
v/c Ratio		0.70	0.71					0.50		0.50	0.71	
Uniform Delay, d1		16.1	16.1					8.3		8.2	9.6	
Progression Factor		1.00	1.00					1.00		1.00	1.00	
Incremental Delay, d2		5.0	5.1					0.2		2.4	1.3	
Delay (s)		21.1	21.3					8.5		10.6	11.0	
Level of Service		С	С					А		В	В	
Approach Delay (s)		21.2			0.0			8.5			11.0	
Approach LOS		С			А			А			В	
Intersection Summary												
HCM 2000 Control Delay			12.3	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.71									
Actuated Cycle Length (s)			51.3	S	um of lost	t time (s)			10.0			
Intersection Capacity Utilization	n		65.3%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	∢	•	Ť	1	1	ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ሻቸ		↑			1		
Volume (veh/h)	1230	100	120	0	0	100		
Sign Control	Free		Stop			Stop		
Grade	0%		0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	1337	109	130	0	0	109		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	0		2783	0	2793	2728		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	0		2783	0	2793	2728		
tC, single (s)	4.1		6.5	6.2	7.1	6.5		
tC, 2 stage (s)								
tF (s)	2.2		4.0	3.3	3.5	4.0		
p0 queue free %	18		0	100	0	0		
cM capacity (veh/h)	1623		3	1085	0	4		
Direction, Lane #	WB 1	WB 2	NB 1	SB 1				
Volume Total	891	554	130	109				
Volume Left	891	446	0	0				
Volume Right	0	109	0	0				
cSH	1623	1623	3	4				
Volume to Capacity	0.82	0.82	39.22	30.12				
Queue Length 95th (ft)	269	269	Err	Err				
Control Delay (s)	16.5	16.1	Err	Err				
Lane LOS	C	C	F	F				
Approach Delay (s)	16.3	Ŭ	Err	Err				
Approach LOS	10.0		F	F				
Intersection Summary								
Average Delay			1433.2					
Intersection Capacity Utiliz	vation		85.4%			of Service	د	
Analysis Period (min)			15					
			15					

2: MLK Jr Dr & N Marginal Rd 2034 AM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB Signal

	٦	\mathbf{F}	1	1	ţ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			† †	A	
Volume (veh/h)	20	80	20	470	1180	150
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	87	22	511	1283	163
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)				353		
pX, platoon unblocked						
vC, conflicting volume	1663	723	1446			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1663	723	1446			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	74	76	95			
cM capacity (veh/h)	84	369	465			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	109	192	341	855	591	
Volume Left	22	22	0	0	0	
Volume Right	87	0	0	0	163	
cSH	219	465	1700	1700	1700	
Volume to Capacity	0.50	0.05	0.20	0.50	0.35	
Queue Length 95th (ft)	62	4	0	0	0	
Control Delay (s)	36.5	2.1	0.0	0.0	0.0	
Lane LOS	E	А				
Approach Delay (s)	36.5	0.8		0.0		
Approach LOS	E					
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utiliz	zation		50.1%	IC	CU Level c	f Service
Analysis Period (min)			15			
, ··· , /						

	4	•	Ť	۲	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻቸ		1			1
Volume (veh/h)	565	75	75	0	0	130
Sign Control	Free		Stop			Stop
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	614	82	82	0	0	141
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	0		1310	0	1310	1269
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	0		1310	0	1310	1269
tC, single (s)	4.1		6.5	6.2	7.1	6.5
tC, 2 stage (s)						
tF (s)	2.2		4.0	3.3	3.5	4.0
p0 queue free %	62		18	100	100	0
cM capacity (veh/h)	1623		99	1085	32	105
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	409	286	82	141		
Volume Left	409	205	0	0		
Volume Right	0	82	0	0		
cSH	1623	1623	99	105		
Volume to Capacity	0.38	0.38	0.82	1.35		
Queue Length 95th (ft)	45	45	114	248		
Control Delay (s)	8.6	7.1	124.7	283.2		
Lane LOS	A	А	F	F		
Approach Delay (s)	8.0		124.7	283.2		
Approach LOS			F	F		
Intersection Summary						
Average Delay			60.7			
Intersection Capacity Utiliz	ation		71.2%	IC	U Level o	of Service
Analysis Period (min)			15			

2: MLK Jr Dr & N Marginal Rd 2034 PM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB Signal

	∕	\mathbf{i}	1	1	ţ	~	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			††	¥⊅		
Volume (veh/h)	20	180	20	575	555	140	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	22	196	22	625	603	152	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)				353			
pX, platoon unblocked							
vC, conflicting volume	1035	378	755				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1035	378	755				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	90	68	97				
cM capacity (veh/h)	222	620	851				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	217	230	417	402	353		
Volume Left	22	22	0	0	0		
Volume Right	196	0	Ũ	0	152		
cSH	526	851	1700	1700	1700		
Volume to Capacity	0.41	0.03	0.25	0.24	0.21		
Queue Length 95th (ft)	50	2	0.20	0.21	0.21		
Control Delay (s)	16.6	1.1	0.0	0.0	0.0		
Lane LOS	C	A		0.0			
Approach Delay (s)	16.6	0.4		0.0			
Approach LOS	С	••••					
Intersection Summary							
Average Delay			2.4				
Intersection Capacity Utiliza	tion		49.3%	IC	CU Level c	f Service	
Analysis Period (min)			15		, _,		

3: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp 2034 PM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB Signal

	۶	-	\mathbf{i}	∢	-	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	1					∱ β		۲	<u></u>	
Volume (vph)	45	5	500	0	0	0	0	550	1255	190	545	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0		4.0	5.0	
Lane Util. Factor		0.95	0.95					0.95		1.00	0.95	
Frt		0.88	0.85					0.90		1.00	1.00	
Flt Protected		0.99	1.00					1.00		0.95	1.00	
Satd. Flow (prot)		1539	1504					3170		1770	3539	
Flt Permitted		0.99	1.00					1.00		0.08	1.00	
Satd. Flow (perm)		1539	1504					3170		143	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	49	5	543	0	0	0	0	598	1364	207	592	0
RTOR Reduction (vph)	0	194	255	0	0	0	0	290	0	0	0	0
Lane Group Flow (vph)	0	110	38	0	0	0	0	1672	0	207	592	0
Turn Type	Perm	NA	Perm					NA		pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4							6		
Actuated Green, G (s)		10.5	10.5					48.0		61.4	61.4	
Effective Green, g (s)		10.5	10.5					48.0		61.4	61.4	
Actuated g/C Ratio		0.13	0.13					0.59		0.75	0.75	
Clearance Time (s)		5.0	5.0					5.0		4.0	5.0	
Vehicle Extension (s)		3.0	3.0					3.0		3.0	3.0	
Lane Grp Cap (vph)		197	192					1857		293	2653	
v/s Ratio Prot								c0.53		c0.08	0.17	
v/s Ratio Perm		0.07	0.02							0.45		
v/c Ratio		0.56	0.20					1.11dr		0.71	0.22	
Uniform Delay, d1		33.5	31.9					14.9		22.5	3.1	
Progression Factor		1.00	1.00					1.00		1.00	1.00	
Incremental Delay, d2		3.6	0.5					6.4		7.6	0.0	
Delay (s)		37.2	32.4					21.3		30.1	3.1	
Level of Service		D	С					С		С	А	
Approach Delay (s)		34.8			0.0			21.3			10.1	
Approach LOS		С			А			С			В	
Intersection Summary												
HCM 2000 Control Delay			21.0	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacit	y ratio		0.82									
Actuated Cycle Length (s)			81.9		um of lost				14.0			
Intersection Capacity Utilizatio	n		90.9%	IC	CU Level of	of Service			E			
Analysis Period (min)			15									
dr Defacto Right Lane. Rece	ode with	1 though	lane as a	right lane).							
 Critical Lana Group 												

c Critical Lane Group

	4	×	1	1	1	ţ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ኘቸ		†			•		
Volume (vph)	1230	100	120	0	0	100		
Ideal Flow (vphpl)	1500	1500	1900	1900	1900	1900		
Total Lost time (s)	5.0		5.0			5.0		
Lane Util. Factor	0.97		1.00			1.00		
Frt	0.99		1.00			1.00		
Flt Protected	0.96		1.00			1.00		
Satd. Flow (prot)	2696		1863			1863		
Flt Permitted	0.96		1.00			1.00		
Satd. Flow (perm)	2696		1863			1863		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	1337	109	130	0	0	109		
RTOR Reduction (vph)	7	0	0	0	0	0		
Lane Group Flow (vph)	1439	0	130	0	0	109		
Turn Type	Prot		NA			NA		
Protected Phases	8		4			6		
Permitted Phases								
Actuated Green, G (s)	56.4		9.5			9.1		
Effective Green, g (s)	56.4		9.5			9.1		
Actuated g/C Ratio	0.63		0.11			0.10		
Clearance Time (s)	5.0		5.0			5.0		
Vehicle Extension (s)	3.0		3.0			3.0		
Lane Grp Cap (vph)	1689		196			188		
v/s Ratio Prot	c0.53		c0.07			c0.06		
v/s Ratio Perm								
v/c Ratio	0.85		0.66			0.58		
Uniform Delay, d1	13.5		38.7			38.6		
Progression Factor	1.00		1.12			1.00		
Incremental Delay, d2	5.7		8.1			4.3		
Delay (s)	19.1		51.6			42.9		
Level of Service	В		D			D		
Approach Delay (s)	19.1		51.6			42.9		
Approach LOS	В		D			D		
Intersection Summary								
HCM 2000 Control Delay			23.2	HC	CM 2000	Level of Servi	ce C	
HCM 2000 Volume to Capa	icity ratio		0.79					
Actuated Cycle Length (s)			90.0	Su	im of lost	time (s)	15.0	
Intersection Capacity Utilization	ation		63.1%	IC	U Level c	of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

2: MLK Jr Dr & N Marginal Rd 2034 AM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB & WB Signal

	٦	\mathbf{r}	•	Ť	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		ľ	<u></u>	≜ †î≽		
Volume (vph)	20	80	20	470	1180	150	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0		5.0	5.0	5.0		
Lane Util. Factor	1.00		1.00	0.95	0.95		
Frt	0.89		1.00	1.00	0.98		
Flt Protected	0.99		0.95	1.00	1.00		
Satd. Flow (prot)	1645		1770	3539	3479		
Flt Permitted	0.99		0.10	1.00	1.00		
Satd. Flow (perm)	1645		178	3539	3479		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	22	87	22	511	1283	163	
RTOR Reduction (vph)	78	0	0	0	10	0	
Lane Group Flow (vph)	31	0	22	511	1436	0	
Turn Type	Prot		Perm	NA	NA		
Protected Phases	4			2	8		
Permitted Phases			2				
Actuated Green, G (s)	9.5		70.5	70.5	56.4		
Effective Green, g (s)	9.5		70.5	70.5	56.4		
Actuated g/C Ratio	0.11		0.78	0.78	0.63		
Clearance Time (s)	5.0		5.0	5.0	5.0		
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Lane Grp Cap (vph)	173		139	2772	2180		
v/s Ratio Prot	c0.02			c0.14	c0.41		
v/s Ratio Perm			0.12				
v/c Ratio	0.18		0.16	0.18	0.66		
Uniform Delay, d1	36.7		2.4	2.5	10.7		
Progression Factor	1.00		0.62	0.79	0.33		
Incremental Delay, d2	0.5		2.1	0.1	1.0		
Delay (s)	37.2		3.6	2.1	4.5		
Level of Service	D		А	А	А		
Approach Delay (s)	37.2			2.1	4.5		
Approach LOS	D			А	А		
Intersection Summary							
HCM 2000 Control Delay			5.6	H	CM 2000	Level of Service	
HCM 2000 Volume to Capa	city ratio		0.55				
Actuated Cycle Length (s)			90.0		um of lost		
Intersection Capacity Utiliza	ition		51.8%	IC	CU Level a	f Service	
Analysis Period (min)			15				
c Critical Lane Group							

3: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp 2034 AM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB & WB Signal

	٭	-	$\mathbf{\hat{z}}$	4	←	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	1					∱ }		<u>۲</u>	- † †	
Volume (vph)	35	5	590	0	0	0	0	455	605	75	1180	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0		5.0	5.0	
Lane Util. Factor		0.95	0.95					0.95		1.00	0.95	
Frt		0.87	0.85					0.91		1.00	1.00	
Flt Protected		0.99	1.00					1.00		0.95	1.00	
Satd. Flow (prot)		1529	1504					3236		1770	3539	
Flt Permitted		0.99	1.00					1.00		0.20	1.00	
Satd. Flow (perm)		1529	1504					3236		365	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	38	5	641	0	0	0	0	495	658	82	1283	0
RTOR Reduction (vph)	0	39	39	0	0	0	0	223	0	0	0	0
Lane Group Flow (vph)	0	305	301	0	0	0	0	930	0	82	1283	0
Turn Type	Perm	NA	Perm					NA		Perm	NA	
Protected Phases		4						2			6	
Permitted Phases	4		4							6		
Actuated Green, G (s)		22.7	22.7					57.3		57.3	57.3	
Effective Green, g (s)		22.7	22.7					57.3		57.3	57.3	
Actuated g/C Ratio		0.25	0.25					0.64		0.64	0.64	
Clearance Time (s)		5.0	5.0					5.0		5.0	5.0	
Vehicle Extension (s)		3.0	3.0					3.0		3.0	3.0	
Lane Grp Cap (vph)		385	379					2060		232	2253	
v/s Ratio Prot								0.29			c0.36	
v/s Ratio Perm		0.20	c0.20							0.22		
v/c Ratio		0.79	0.79					0.45		0.35	0.57	
Uniform Delay, d1		31.4	31.5					8.3		7.7	9.3	
Progression Factor		1.00	1.00					1.00		0.89	1.01	
Incremental Delay, d2		10.7	10.9					0.7		3.2	0.8	
Delay (s)		42.1	42.4					9.1		10.0	10.2	
Level of Service		D	D					А		В	В	
Approach Delay (s)		42.3			0.0			9.1			10.2	
Approach LOS		D			А			А			В	
Intersection Summary												
HCM 2000 Control Delay			16.6	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.63									
Actuated Cycle Length (s)			90.0		um of lost				10.0			
Intersection Capacity Utilization	ı		65.3%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	*	*	Ť	*	1	Ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ሻቸ		1			†		
Volume (vph)	565	75	75	0	0	130		
Ideal Flow (vphpl)	1500	1500	1900	1900	1900	1900		
Total Lost time (s)	5.0		5.0			5.0		
Lane Util. Factor	0.97		1.00			1.00		
Frt	0.98		1.00			1.00		
FIt Protected	0.96		1.00			1.00		
Satd. Flow (prot)	2684		1863			1863		
Flt Permitted	0.96		1.00			1.00		
Satd. Flow (perm)	2684		1863			1863		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	614	82	82	0	0	141		
RTOR Reduction (vph)	11	0	0	0	0	0		
Lane Group Flow (vph)	685	0	82	0	0	141		
Turn Type	Prot		NA			NA		
Protected Phases	8		4			6		
Permitted Phases						-		
Actuated Green, G (s)	56.6		8.6			9.8		
Effective Green, g (s)	56.6		8.6			9.8		
Actuated g/C Ratio	0.63		0.10			0.11		
Clearance Time (s)	5.0		5.0			5.0		
Vehicle Extension (s)	3.0		3.0			3.0		
Lane Grp Cap (vph)	1687		178			202		
v/s Ratio Prot	c0.26		c0.04			c0.08		
v/s Ratio Perm								
v/c Ratio	0.41		0.46			0.70		
Uniform Delay, d1	8.3		38.5			38.7		
Progression Factor	1.00		0.93			1.00		
Incremental Delay, d2	0.7		1.9			10.0		
Delay (s)	9.0		37.5			48.7		
Level of Service	А		D			D		
Approach Delay (s)	9.0		37.5			48.7		
Approach LOS	A		D			D		
Intersection Summary								
HCM 2000 Control Delay			17.7	HC	CM 2000	Level of Servi	ce B	
HCM 2000 Volume to Capao	city ratio		0.45					
Actuated Cycle Length (s)			90.0	Su	im of lost	time (s)	15.0	
Intersection Capacity Utiliza	tion		38.6%			f Service	А	
Analysis Period (min)			15					
c Critical Lane Group								

2: MLK Jr Dr & N Marginal Rd 2034 PM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB & WB Signal

	٦	\mathbf{r}	•	Ť	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		7	† †	≜ †}⊧		
Volume (vph)	20	180	20	575	555	140	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0		5.0	5.0	5.0		
Lane Util. Factor	1.00		1.00	0.95	0.95		
Frt	0.88		1.00	1.00	0.97		
Flt Protected	0.99		0.95	1.00	1.00		
Satd. Flow (prot)	1628		1770	3539	3432		
Flt Permitted	0.99		0.27	1.00	1.00		
Satd. Flow (perm)	1628		497	3539	3432		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	22	196	22	625	603	152	
RTOR Reduction (vph)	177	0	0	0	24	0	
Lane Group Flow (vph)	41	0	22	625	731	0	
Turn Type	Prot		Perm	NA	NA		
Protected Phases	4			2	8		
Permitted Phases			2				
Actuated Green, G (s)	8.6		71.4	71.4	56.6		
Effective Green, g (s)	8.6		71.4	71.4	56.6		
Actuated g/C Ratio	0.10		0.79	0.79	0.63		
Clearance Time (s)	5.0		5.0	5.0	5.0		
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Lane Grp Cap (vph)	155		394	2807	2158		
v/s Ratio Prot	c0.03			c0.18	c0.21		
v/s Ratio Perm			0.04				
v/c Ratio	0.26		0.06	0.22	0.34		
Uniform Delay, d1	37.8		2.0	2.3	7.9		
Progression Factor	1.00		0.69	0.61	0.38		
Incremental Delay, d2	0.9		0.1	0.1	0.4		
Delay (s)	38.7		1.5	1.5	3.4		
Level of Service	D		А	А	А		
Approach Delay (s)	38.7			1.5	3.4		
Approach LOS	D			А	А		
Intersection Summary							
HCM 2000 Control Delay			7.4	Н	CM 2000	Level of Service	
HCM 2000 Volume to Capa	icity ratio		0.32				
Actuated Cycle Length (s)			90.0		um of lost		
Intersection Capacity Utiliza	ation		40.4%	IC	U Level c	f Service	
Analysis Period (min)			15				
c Critical Lane Group							

3: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp 2034 PM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB & WB Signal

	≯	-	\mathbf{i}	•	-	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	1					A1⊅		۲	<u></u>	
Volume (vph)	45	5	500	0	0	0	0	550	1255	190	545	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0		5.0	5.0	
Lane Util. Factor		0.95	0.95					0.95		1.00	0.95	
Frt		0.88	0.85					0.90		1.00	1.00	
Flt Protected		0.99	1.00					1.00		0.95	1.00	
Satd. Flow (prot)		1539	1504					3170		1770	3539	
Flt Permitted		0.99	1.00					1.00		0.07	1.00	
Satd. Flow (perm)		1539	1504					3170		125	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	49	5	543	0	0	0	0	598	1364	207	592	0
RTOR Reduction (vph)	0	195	258	0	0	0	0	282	0	0	0	0
Lane Group Flow (vph)	0	109	35	0	0	0	0	1680	0	207	592	0
Turn Type	Perm	NA	Perm					NA		pm+pt	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4							6		
Actuated Green, G (s)		10.9	10.9					54.7		69.1	69.1	
Effective Green, g (s)		10.9	10.9					54.7		69.1	69.1	
Actuated g/C Ratio		0.12	0.12					0.61		0.77	0.77	
Clearance Time (s)		5.0	5.0					5.0		5.0	5.0	
Vehicle Extension (s)		3.0	3.0					3.0		3.0	3.0	
Lane Grp Cap (vph)		186	182					1926		267	2717	
v/s Ratio Prot								c0.53		c0.08	0.17	
v/s Ratio Perm		0.07	0.02							0.51		
v/c Ratio		0.59	0.19					1.08dr		0.78	0.22	
Uniform Delay, d1		37.4	35.6					14.7		26.8	2.9	
Progression Factor		1.00	1.00					1.00		1.66	0.70	
Incremental Delay, d2		4.6	0.5					5.8		12.3	0.2	
Delay (s)		42.1	36.1					20.5		56.6	2.2	
Level of Service		D	D					С		E	Α	
Approach Delay (s)		39.1			0.0			20.5			16.3	
Approach LOS		D			А			С			В	
Intersection Summary												
HCM 2000 Control Delay			22.8	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	/ ratio		0.82									
Actuated Cycle Length (s)			90.0		um of lost				15.0			
Intersection Capacity Utilization	n		91.8%	IC	CU Level of	of Service			F			
Analysis Period (min)			15									
dr Defacto Right Lane. Reco	ode with	1 though	lane as a	right lane).							
 Critical Lane Group 												

c Critical Lane Group

Intersection: 1: MLK Jr Dr/Lakeshore Blvd & IR-90 WB Off Ramp

Movement	WB	NB	SB
Directions Served	LR	Т	Т
Maximum Queue (ft)	1264	162	126
Average Queue (ft)	1185	59	43
95th Queue (ft)	1535	125	85
Link Distance (ft)	1208	177	582
Upstream Blk Time (%)	85	4	
Queuing Penalty (veh)	0	5	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 3: MLK Jr Dr & IR-90 WB On Ramp

Movement	NB	SB	SB
		50	50
Directions Served			
Maximum Queue (ft)	18	218	208
Average Queue (ft)	1	192	175
95th Queue (ft)	9	237	233
Link Distance (ft)	18	177	177
Upstream Blk Time (%)	4	26	12
Queuing Penalty (veh)	9	160	70
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 5: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	Т	TR	LT	Т
Maximum Queue (ft)	784	797	22	102	348	372
Average Queue (ft)	692	709	1	12	318	295
95th Queue (ft)	982	969	12	56	343	406
Link Distance (ft)	750	750	289	289	302	302
Upstream Blk Time (%)	78	84			45	14
Queuing Penalty (veh)	0	0			272	83
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 8: MLK Jr Dr & N Marginal Rd

Movement	EB	NB	SB	SB
Directions Served	LR	LT	Т	TR
Maximum Queue (ft)	106	126	65	55
Average Queue (ft)	31	19	35	14
95th Queue (ft)	82	84	52	42
Link Distance (ft)	787	302	18	18
Upstream Blk Time (%)		0	42	7
Queuing Penalty (veh)		0	252	42
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 13: MLK Drive & Broad Ave

Movement	EB	NB	NB	SB	B12	B12
Directions Served	LR	L	Т	TR	Т	
Maximum Queue (ft)	43	70	446	176	411	326
Average Queue (ft)	17	20	65	97	370	205
95th Queue (ft)	43	56	256	221	474	442
Link Distance (ft)	276	2210	2210	85	289	289
Upstream Blk Time (%)				8	69	6
Queuing Penalty (veh)				146	610	56
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						
Quoung ronany (von)						

Network Summary

Network wide Queuing Penalty: 1706

Intersection: 1: MLK Jr Dr/Lakeshore Blvd & IR-90 WB Off Ramp

Movement	WB	WB	NB	SB
Directions Served	L	LR	Т	Т
Maximum Queue (ft)	25	33	151	116
Average Queue (ft)	2	3	73	48
95th Queue (ft)	12	18	136	88
Link Distance (ft)	1209	1209	171	576
Upstream Blk Time (%)			2	
Queuing Penalty (veh)			3	
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: MLK Jr Dr & IR-90 WB On Ramp

Movement	NB	NB
Directions Served	Т	R
Maximum Queue (ft)	12	9
Average Queue (ft)	2	0
95th Queue (ft)	13	6
Link Distance (ft)	18	18
Upstream Blk Time (%)	2	0
Queuing Penalty (veh)	4	0
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 5: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	Т	TR	LT	Т
Maximum Queue (ft)	790	799	7	57	116	133
Average Queue (ft)	755	769	0	9	33	20
95th Queue (ft)	903	784	7	40	101	9 5
Link Distance (ft)	750	750	289	289	302	302
Upstream Blk Time (%)	93	98				
Queuing Penalty (veh)	0	0				
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

6/23/2015

Intersection: 8: MLK Jr Dr & N Marginal Rd

Movement	EB	NB	SB
Directions Served	LR	LT	TR
Maximum Queue (ft)	71	85	4
Average Queue (ft)	24	22	0
95th Queue (ft)	59	67	3
Link Distance (ft)	787	302	18
Upstream Blk Time (%)			0
Queuing Penalty (veh)			0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 13: MLK Drive & Broad Ave

Movement	EB	NB	SB	SB
Directions Served	LR	LT	Т	TR
Maximum Queue (ft)	39	598	109	108
Average Queue (ft)	14	113	23	28
95th Queue (ft)	39	426	76	85
Link Distance (ft)	269	2210	85	85
Upstream Blk Time (%)			0	0
Queuing Penalty (veh)			3	3
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Network Summary

Network wide Queuing Penalty: 12

Intersection: 1: MLK Jr Dr/Lakeshore Blvd & IR-90 WB Off Ramp

Movement	WB	WB	NB	SB
Directions Served	L	LR	Т	Т
Maximum Queue (ft)	32	28	174	100
Average Queue (ft)	2	2	82	48
95th Queue (ft)	13	14	157	83
Link Distance (ft)	1209	1209	171	576
Upstream Blk Time (%)			5	
Queuing Penalty (veh)			6	
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 3: MLK Jr Dr & IR-90 WB On Ramp

Movement	NB
Directions Served	Т
Maximum Queue (ft)	27
Average Queue (ft)	3
95th Queue (ft)	18
Link Distance (ft)	18
Upstream Blk Time (%)	3
Queuing Penalty (veh)	8
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 5: MLK Jr Dr & IR-90 EB Off Ramp/IR-90 EB On Ramp

Movement	EB	EB	NB	NB	B12	SB	SB	SB
Directions Served	LTR	R	Т	TR	Т	L	Т	Т
Maximum Queue (ft)	269	234	187	299	37	66	158	158
Average Queue (ft)	162	112	38	155	2	14	77	104
95th Queue (ft)	242	212	118	270	29	43	130	151
Link Distance (ft)	752	752	295	295	85		308	308
Upstream Blk Time (%)			0	1	0			
Queuing Penalty (veh)			0	5	3			
Storage Bay Dist (ft)						100		
Storage Blk Time (%)							1	
Queuing Penalty (veh)							0	

6/23/2015

Intersection: 8: MLK Jr Dr & N Marginal Rd

Movement	EB	NB	NB	SB
Directions Served	LR	L	Т	TR
Maximum Queue (ft)	96	47	49	4
Average Queue (ft)	28	14	3	0
95th Queue (ft)	69	42	26	3
Link Distance (ft)	786		308	18
Upstream Blk Time (%)				0
Queuing Penalty (veh)				0
Storage Bay Dist (ft)		100		
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 13: MLK Drive & Broad Ave

Movement	EB	NB	SB	SB	B12	B12
Directions Served	LR	LT	Т	TR	Т	Т
Maximum Queue (ft)	42	752	141	153	15	28
Average Queue (ft)	15	193	33	44	1	2
95th Queue (ft)	41	577	102	126	8	14
Link Distance (ft)	269	2210	85	85	295	295
Upstream Blk Time (%)			1	2		
Queuing Penalty (veh)			8	14		
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty: 44

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	: 1	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	West of ODOT I	Eastbound ^f E 55th St District 12 xisting Condition
	90-19.5/21.3				
Oper.(LOS)			Des.(N)	Pla	nning Data
Flow Inputs					
Volume, V AADT	3975	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments		-		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed,	60.0	mph	FFS	60.0	mph
BFFS		mph			
LOS and Performanc	e Measures	5	Design (N)		
Operational (LOS)			Design (N)		
v _p = (V or DDHV) / (PHF x l x f _p)	N x f _{HV} 1078	pc/h/ln	Design LOS v _p = (V or DDHV) / (PHF x	N x f _{HV}	pc/h/ln
S	60.0	mph	x f _p) S		mph
D = v _p / S	18.0	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lane	s, N	pormini
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 11/19/2015 4:19 PM

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	: 1	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	West of ODOT I	Eastbound E 55th St District 12 xisting Condition
	90-19.5/21.3				
Oper.(LOS)			Des.(N)	Pla	nning Data
Flow Inputs					
Volume, V AADT	5480	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] <i>0.980</i>	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed,	60.0	mph	FFS	60.0	mph
BFFS		mph			
LOS and Performanc	e Measures	;	Design (N)		
Operational (LOS)			<u>Design (N)</u> Design LOS		
v _p = (V or DDHV) / (PHF x x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S	60.0	mph	S		mph
D = v _p / S	24.8	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes	s, N	,
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 11/19/2015 4:20 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betwee ODOT L	Eastbound n E 55th Ramps District 12 xisting Condition
	90-19.5/21.3				
Oper.(LOS)			es.(N)	Plar	nning Data
Flow Inputs					
Volume, V AADT	3660	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
fp	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			
LOS and Performanc	e Measures	6	Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x l	N x f		<u>Design (N)</u> Design LOS		
$x f_p$		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
5 D=v / 6	60.0	mph	S		mph
$D = v_p / S$	16.5	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 11/19/2015 3:14 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Г	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ur	Highway/Direction of Travel From/To Jurisdiction Analysis Year	Betweer ODOT D	Eastbound b E 55th Ramps District 12 isting Condition
Project Description CUY-	90-19.5/21.3				
✓ Oper.(LOS) Flow Inputs			Des.(N)	Plan	ning Data
Volume, V	5270	veh/h	Poak Hour Easter DHE	0.94	
AADT	5270	veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _ρ Ε _Τ	1.00 1.5		E _R f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1)	1.2 10.980	
Speed Inputs	1.0		Calc Speed Adj and F		
		0	Calc Speed Auj allu I	13	
Lane Width		ft ft			
Rt-Side Lat. Clearance Number of Lanes, N	4	Ц	f _{LW}		mph
	7	romno/mi	f _{LC}		mph
Total Ramp Density, TRD	60.0	ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed, BFFS	00.0	mph mph	FFS	60.0	mph
LOS and Performanc	e Measures	;	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I	N x f		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x f x f _p)	N x f _{HV}	pc/h/ln
S R = ··· / C	60.0	mph	S		mph
$D = v_p / S$	23.8	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes	, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 7 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

HCS 2010TM Version 6.65

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst	MLS		Highway/Direction of Trave	IR-90 /	Fastbound
Agency or Company	LJB Inc.		From/To		n E 55th and E
				72nd	District 40
Date Performed Analysis Time Period	2/27/2015 AM Peak Ho	ur	Jurisdiction Analysis Year		District 12 kisting Condition
Project Description CUY-				20012	acting contaition
Oper.(LOS)			Des.(N)	🗌 Plar	nning Data
Flow Inputs					0
Volume, V	4030	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P_T	4	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
			Up/Down %		
Calculate Flow Adjus	stments				
f _p	1.00		E _R	1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed,		mph	IFF S	00.0	тірі
BFFS		•			
LOS and Performanc	e Measures	3	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
	Nyf		Design LOS		
v _p = (V or DDHV) / (PHF x	¹ 1093	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{HV}	no/h/ln
x f _p)	<u> </u>	an a b	x f _p)		pc/h/ln
S D = v / C	60.0	mph	S		mph
$D = v_p / S$	18.2	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	ed			f
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12	44 40	f _{LW} - Exhibit 11-8
v _p - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
LOS - Level of service		ase free-flow	f _p - Page 11-18		TRD - Page 11-11
speed			LOS, S, FFS, v _p - Exhibits	11-2,	
DDHV - Directional design	hour volume		11-3		

HCS 2010TM Version 6.60

Generated: 6/22/2015 12:54 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst	MLS		Highway/Direction of Trave	IR-90 / I	Fastbound
Agency or Company	LJB Inc.		From/To		n E 55th and E
Date Performed	2/27/2015		Jurisdiction	72nd	District 12
Analysis Time Period	2/2//2015 PM Peak Ho	ur	Analysis Year		visting Condition
Project Description CUY-		-			J
✓ Oper.(LOS)			es.(N)	🗌 Plar	nning Data
Flow Inputs					
Volume, V	6030	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P_T	4	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
Coloulata Flow Adius			Up/Down %		
Calculate Flow Adjus			_		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	, mph
Base free-flow Speed,		mph		00.0	тірі
BFFS		•			
LOS and Performanc	e Measures	5	Design (N)		
Operational (LOS)			<u>Design (N)</u>		
$v_p = (V \text{ or DDHV}) / (PHF x)$	Nxf		Design LOS		
v _p (vorbbriv)/(rm x vf)	¹ HV 1636	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{HV}	pc/h/ln
x f _p) S	60.0	mph	x f _p)		pennin
		mph	S		mph
$D = v_p / S$	27.3	pc/mi/ln	D = v _p / S		pc/mi/ln
LOS	D		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	ed	E Exhibito 11 10 11 10		f
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12	11 10	f _{LW} - Exhibit 11-8
v _p - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
LOS - Level of service		ase free-flow	f _p - Page 11-18		TRD - Page 11-11
speed		-	LOS, S, FFS, v _p - Exhibits	11-2,	
DDHV - Directional design	hour volume		11-3		

HCS 2010TM Version 6.60

Generated: 6/22/2015 12:54 PM

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ır	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betwee ODOT L	Eastbound n E 72nd Ramps District 12 kisting Condition
Project Description CUY-	90-19.5/21.3				
Oper.(LOS)			Des.(N)		nning Data
Flow Inputs					
Volume, V AADT	3960	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
É _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 2)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			ľ
LOS and Performanc	e Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I	N x f _{un}		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D = w / C	60.0	mph	S		mph
$D = v_p / S$	17.9	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 12:56 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betwee ODOT I	Eastbound n E 72nd Ramps District 12 xisting Condition
Project Description CUY-	90-19.5/21.3				
Oper.(LOS)			es.(N)	Plai	nning Data
Flow Inputs					
Volume, V AADT	5930	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
É _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			
LOS and Performanc	e Measures	;	Design (N)		
Operational (LOS)			<u>Design (N)</u> Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV} 1609	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f_{HV}	pc/h/ln
S	60.0	mph	x f _p) S		mph
$D = v_p / S$	26.8	pc/mi/ln	$D = v_n / S$		pc/mi/ln
LOS	D		Required Number of Lanes	s, N	p0/111/11
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:33 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ır	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betwee ODOT L	Eastbound n MLK Ramps District 12 xisting Condition
Project Description CUY-	90-19.5/21.3				
Oper.(LOS)			es.(N)		nning Data
Flow Inputs					
Volume, V AADT	3395	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
É _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] <i>0.980</i>	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			F
LOS and Performanc	e Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x	N x f _{HV} .		<u>Design (N)</u> Design LOS		
x f _p)	-	pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N X I _{HV}	pc/h/ln
S D = y / S	60.0	mph	S		mph
$D = v_p / S$	15.4	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:33 PM

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	. 1	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betwee ODOT I	Eastbound n MLK Ramps District 12 xisting Condition
	90-19.5/21.3				
Oper.(LOS)			Des.(N)	Pla	nning Data
Flow Inputs					
Volume, V AADT	5545	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			
LOS and Performanc	e Measures	6	Design (N)		
Operational (LOS)	NL f		<u>Design (N)</u> Design LOS		
$v_p = (V \text{ or DDHV}) / (PHF x)$ x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S	60.0	mph	S		mph
$D = v_p / S$	25.1	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 11/19/2015 3:19 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed	MLS LJB Inc. 2/27/2015		Highway/Direction of Trave From/To Jurisdiction	East of	
Analysis Time Period	AM Peak Ho	ur	Analysis Year		kisting Condition
, ,	90-19.5/21.3				
Oper.(LOS)			Des.(N)		nning Data
<i>Flow Inputs</i> Volume, V	4015	veh/h	Peak-Hour Factor, PHF	0.94	
AADT	4015	ven/n veh/day	%Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length Up/Down %	mi	
Calculate Flow Adjus	tments		· · · ·		
f _p	1.00		E _R	1.2	
Ε _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph		00.0	mpn
LOS and Performanc	e Measures	;	Design (N)		
Operational (LOC)			Design (N)		
Operational (LOS)	Nivf		Design LOS		
v _p = (V or DDHV) / (PHF x x f _p)	^{IN X I} HV 1089	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{HV}	pc/h/ln
S	60.0	mph	x f _p)		·
$D = v_p / S$	18.1	pc/mi/ln	S		mph
LOS	С	P	$D = v_p / S$		pc/mi/ln
			Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	d	E _R - Exhibits 11-10, 11-12		f _{I W} - Exhibit 11-8
V - Hourly volume	D - Dens	ity	E _T - Exhibits 11-10, 11-11,		f _{LC} - Exhibit 11-9
v _p - Flow rate		e-flow speed	f _n - Page 11-18	-	TRD - Page 11-1
LOS - Level of service	BFFS - Ba	se free-flow	LOS, S, FFS, v _p - Exhibits	11-2	
speed DDHV - Directional design	hourvolume		11-3	·· _ ,	
					stad: 11/10/2015 4:20

HCS 2010TM Version 6.60

Generated: 11/19/2015 4:20 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hot	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	East of ODOT I	
	90-19.5/21.3				
Oper.(LOS)			Des.(N)	Plai	nning Data
Flow Inputs					
Volume, V AADT Deek Hr Dren, of AADT, K	6830	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T % PVc, P	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			
LOS and Performanc	e Measures	•	Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x	N x f		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D=v/S	58.8 21.5	mph pc/mi/lp	S		mph
D = v _p / S LOS	31.5 D	pc/mi/In	D = v _p / S		pc/mi/ln
	D		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 11/19/2015 3:21 PM

	BASIC FRE	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ır	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betweer	n E.72nd and MLK District 12
Project Description CUY-	90-19.5/21.3				uning Data
✓ Oper.(LOS) Flow Inputs			Des.(N)		nning Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	3960	veh/h veh/day veh/h	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length	0.94 4 0 Level mi	
Calaulata Elaw Adiua	tmanta		Up/Down %		
Calculate Flow Adjus ^f p E _T	1.00 1.5		E _R f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1	1.2)] 0.980	
Speed Inputs			Calc Speed Adj and I	FS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	4 60.0	ft ft ramps/mi mph mph	f _{⊥w} f _{LC} TRD Adjustment FFS	60.0	mph mph mph mph
LOS and Performanc	e Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x I x f _p) S D = v _p / S LOS	N x f _{HV} 1074 60.0 17.9 B	pc/h/ln mph pc/mi/ln	<u>Design (N)</u> Design LOS v _p = (V or DDHV) / (PHF x x f _p) S D = v _p / S Required Number of Lanes		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11
L			1		

	BASIC FRE	EWAY SE	GMENTS WORKSHEE	Т	
General Information	MLS		Site Information Highway/Direction of Trave		aathaund
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc. 2/27/2015 PM Peak Hou	r	From/To Jurisdiction Analysis Year	Between	E.72nd and MLK
Project Description CUY-s	90-19.5/21.3		, ,		
✓ Oper.(LOS)			es.(N)	🗌 Plan	ning Data
Flow Inputs					
Volume, V AADT	5930	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
Ε _Τ	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$)] 0.980	
Speed Inputs			Calc Speed Adj and F	FS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed, BFFS	60.0	mph mph	FFS	60.0	mph
LOS and Performance	e Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x N	l y f		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S S	60.0	mph	S		mph
$D = v_p / S$	26.8	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	D		Required Number of Lanes	, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design h	S - Speed D - Densit FFS - Free- BFFS - Bas	y flow speed	E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hol	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	East of I ODOT L	
	90-19.5/21.3				
Oper.(LOS)			Des.(N)	Plar	nning Data
Flow Inputs	74.40			0.04	
Volume, V AADT	7140	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
É _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			·
LOS and Performanc	e Measures	5	Design (N)		
Operational (LOS)	Nyf		<u>Design (N)</u> Design LOS		
v _p = (V or DDHV) / (PHF x x f _p)		pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV}	pc/h/ln
S D = w / C	57.9	mph	S		mph
$D = v_p / S$	33.4	pc/mi/In	$D = v_p / S$		pc/mi/ln
LOS	D		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 11/19/2015 4:21 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	:1	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Travel IR-90 / Westbound East of MLK ODOT District 12 2034 Existing Condit	
	90-19.5/21.3				
Oper.(LOS)			Des.(N)	Plar	nning Data
Flow Inputs	(000				
Volume, V AADT	4630	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] <i>0.980</i>	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			
LOS and Performanc	e Measures	;	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	Nyf		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV}	pc/h/In
S	60.0	mph	S		mph
$D = v_p / S$	20.9	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:41 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betweel ODOT L	Westbound n MLK Ramps District 12 kisting Condition
Project Description CUY-	90-19.5/21.3				
✓ Oper.(LOS) Flow Inputs			Des.(N)	Plar	nning Data
•	5940	veh/h	Dook Hour Fostor, DHE	0.04	
Volume, V AADT	5940	veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p Ε _T	1.00 1.5		E_{R} $f_{HV} = 1/[1+P_{T}(E_{T} - 1) + P_{R}(E_{R} - 1)$	1.2 01.0 980	
Speed Inputs	1.0		Calc Speed Adj and F		
Lane Width		ft		10	
Rt-Side Lat. Clearance		n ft			and b
Number of Lanes, N	4	п	f _{LW}		mph
Total Ramp Density, TRD	Т	ramps/mi			mph
FFS (measured)	60.0	mph	TRD Adjustment		mph
Base free-flow Speed, BFFS	00.0	mph	FFS	60.0	mph
LOS and Performanc	e Measures	6	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I	N x f		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D = y / S	60.0	mph	S		mph
$D = v_p / S$	26.9	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	D		Required Number of Lanes	, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

HCS 2010TM Version 6.65

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ur	Highway/Direction of Travel IR-90 / Westbo From/To Between MLK Jurisdiction ODOT District		n MLK Ramps
Project Description CUY-	90-19.5/21.3				<u> </u>
Oper.(LOS)			es.(N)	Plai	nning Data
Flow Inputs					
Volume, V AADT	4110	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			F.
LOS and Performanc	e Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f _{LN}		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D = y / S	60.0 18.6	mph	S		mph
$D = v_p / S$	18.6	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:39 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ur	Highway/Direction of Travel IR-90 / Westbor From/To Between E 72r Jurisdiction ODOT District		n E 72nd Ramps
Project Description CUY-	90-19.5/21.3				
✓ Oper.(LOS)			es.(N)	🗌 Plai	nning Data
Flow Inputs					
Volume, V AADT	6160	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
É _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			F
LOS and Performanc	e Measures	5	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I	N x f _{HV}		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D=v /S	59.9	mph	S		mph
$D = v_p / S$	27.9	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	D		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:38 PM

General Information			Site Information		
	MLS				Maathaund
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc. 2/27/2015	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betweel ODOT L	n E 72nd Ramps District 12 kisting Condition
	90-19.5/21.3		•		-
✓ Oper.(LOS)			Des.(N)	Plar	ning Data
Flow Inputs					
Volume, V AADT	4490	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _ρ Ε _τ	1.00 1.5		E _R f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1	1.2	
Speed Inputs	7.0		Calc Speed Adj and		
Lane Width		ft		110	
Rt-Side Lat. Clearance		ft	£		mah
Number of Lanes, N	4	it.	f _{LW}		mph
Total Ramp Density, TRD	1	ramps/mi	f _{LC}		mph
FFS (measured)	60.0	mph	TRD Adjustment		mph
Base free-flow Speed, BFFS	00.0	mph	FFS	60.0	mph
LOS and Performanc	e Measures	;	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x l	N x f		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D=v /S	60.0	mph	S		mph
$D = v_p / S$	20.3	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:38 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information	MLS		Site Information		Maathariad
Analyst			Highway/Direction of Trave		n E 55th and E
Agency or Company	LJB Inc.		From/To	72nd	
Date Performed	2/27/2015		Jurisdiction		District 12
Analysis Time Period Project Description CUY-	AM Peak Ho	ur	Analysis Year	2034 EX	kisting Condition
✓ Oper.(LOS)	50-15.0/21.5		Des.(N)	Plar	nning Data
Flow Inputs					
Volume, V	6350	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P_T	4	
Peak-Hr Prop. of AADT, K		,	%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
			Up/Down %		
Calculate Flow Adjus	stments				
f _p	1.00		E _R	1.2	
Ε _T	1.5		f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed,		mph		00.0	mpn
BFFS LOS and Performanc	o Mooouroo		Decign (N)		
LOS and Performanc	e measures)	Design (N)		
Operational (LOS)			Design (N)		
v _p = (V or DDHV) / (PHF x	N x f _{HV}		Design LOS		
x f _p)	1723	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N X I _{HV}	pc/h/ln
S	59.7	mph	x f _p)		
D = v _p / S	28.8	pc/mi/ln	S		mph
LOS	D	P	$D = v_p / S$		pc/mi/ln
	_		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	ed	E _R - Exhibits 11-10, 11-12		f _{I W} - Exhibit 11-8
V - Hourly volume	D - Dens	ity	$E_{\rm R}^{-1}$ = Exhibits 11-10, 11-11,	11_13	f_{LC} - Exhibit 11-9
v _p - Flow rate	FFS - Free	e-flow speed		11-10	
LOS - Level of service		se free-flow	f _p - Page 11-18	11 0	TRD - Page 11-11
speed			LOS, S, FFS, v _p - Exhibits	11-2,	
DDHV - Directional design	hour volume		11-3		

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:36 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst	MLS		Highway/Direction of Trave	el <i>IR-90 /</i> I	Westbound
Agency or Company	LJB Inc.		From/To	Betweel	n E 55th and E
Date Performed	2/27/2015		Jurisdiction	72nd 0007 I	District 12
Analysis Time Period	PM Peak Ho	ur	Analysis Year		sting Condition
Project Description CUY-	90-19.5/21.3				-
✓ Oper.(LOS)			es.(N)	🗌 Plar	nning Data
Flow Inputs					
Volume, V	4630	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	4	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D			General Terrain:	Level	
DDHV = AADT x K x D		veh/h	Grade % Length	mi	
			Up/Down %		
Calculate Flow Adjus					
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] <i>0.980</i>	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	-	<u> </u>	-
Base free-flow Speed,			FFS	60.0	mph
BFFS		mph			
LOS and Performanc	e Measures	3	Design (N)		
Operational (LOC)			<u>Design (N)</u>		
Operational (LOS)	N £		Design LOS		
v _p = (V or DDHV) / (PHF x	N X ^T HV <i>1256</i>	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	N x f _{HV}	
x f _p)		•	x f _p)		pc/h/ln
S	60.0	mph	S		mph
$D = v_p / S$	20.9	pc/mi/ln	$D = v_p / S$, pc/mi/ln
LOS	С		Required Number of Lanes	s. N	P
Glossary			Factor Location	o,	
· · · · · · · · · · · · · · · · · · ·					
N - Number of lanes	S - Spee		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8
V - Hourly volume	D - Dens	•	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
v _p - Flow rate		e-flow speed	f _p - Page 11-18		TRD - Page 11-1
LOS - Level of service speed	RLL2 - BS	ase free-flow	LOS, S, FFS, v _p - Exhibits	11-2,	
DDHV - Directional design	hour volume		11-3	·	
			1		

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:36 PM

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Betwee ODOT L	Westbound n E 55th Ramps District 12 kisting Condition
Project Description CUY-	90-19.5/21.3				·
Oper.(LOS)			Des.(N)		nning Data
Flow Inputs					
Volume, V AADT	5610	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
Ē _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] <i>0.980</i>	
Speed Inputs			Calc Speed Adj and	FFS	
_ane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			F.
LOS and Performanc	e Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f _{Liv}		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D = y / S	60.0	mph	S		mph
$D = v_p / S$	25.4	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:37 PM

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ur	Highway/Direction of Travel IR-90 / WestboFrom/ToBetween E 55tlJurisdictionODOT District		n E 55th Ramps
Project Description CUY-	90-19.5/21.3				
Oper.(LOS)			es.(N)	Plar	nning Data
Flow Inputs					
Volume, V AADT	3870	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] <i>0.980</i>	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			
LOS and Performanc	e Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x funz		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D = w / C	60.0	mph	S		mph
$D = v_p / S$	17.5	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:37 PM

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Westbound f E 55th St District 12 Existing Condition	
	90-19.5/21.3				
Oper.(LOS)			Des.(N)	Plar	nning Data
Flow Inputs					
Volume, V AADT	5800	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
Ē _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			Г
LOS and Performanc	e Measures	;	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f.s.		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D = y / S	60.0	mph	S		mph
$D = v_p / S$	26.2	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	D		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	bits 11-10, 11-11, 11-13 11-18	

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:42 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ur	Highway/Direction of Trave From/To Jurisdiction Analysis Year	Westbound f E 55th St District 12 xisting Condition	
	90-19.5/21.3				
Oper.(LOS)			Des.(N)	Plar	nning Data
Flow Inputs					
Volume, V AADT	4170	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
Ē _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.980	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	60.0	mph	FFS	60.0	mph
Base free-flow Speed, BFFS		mph			·
LOS and Performanc	e Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	v _p = (V or DDHV) / (PHF x x f _p)	N x f _{HV}	pc/h/ln
S D-v/S	60.0 18 0	mph po/mi/lp	S		mph
D = v _p / S LOS	18.9 C	pc/mi/ln	$D = v_p / S$		pc/mi/ln
	C		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	bits 11-10, 11-11, 11-13 11-18	

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:42 PM

	BASIC FRE	EEWAY SE		Г	
Conorol Information			Site Information		
General Information Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hou	ır	Site Information Highway/Direction of Travel From/To Jurisdiction Analysis Year		MLK and E.72nd istrict 12
Project Description CUY-	90-19.5/21.3				
Oper.(LOS)			es.(N)	Plan	ning Data
Flow Inputs					
Volume, V AADT Deels Us Daven of AADT 16	6160	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %PVa P	0.94 4	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p Ε _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)$	1.2]0.980	
Speed Inputs			Calc Speed Adj and F		
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed, BFFS	60.0	mph mph	FFS	60.0	mph
LOS and Performanc	e Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x l x f _p)	N x f _{HV} 1671	pc/h/ln	<u>Design (N)</u> Design LOS v _p = (V or DDHV) / (PHF x N x f)	N x f _{HV}	pc/h/ln
S D = v _p / S LOS	59.9 27.9 D	mph pc/mi/ln	x f _p) S D = v _p / S Required Number of Lanes	, N	mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 1 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

	BASIC FRE	EEWAY SE	GMENTS WORKSHEE	Г	
General Information Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hou	ır	Site Information Highway/Direction of Travel From/To Jurisdiction Analysis Year	Betweer	n MLK and E.72nd District 12
Project Description CUY-	90-19.5/21.3				
Oper.(LOS)			es.(N)	🗌 Plan	ning Data
Flow Inputs					
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D	4490	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain:	0.94 4 0 Level	
DDHV = AADT x K x D		veh/h	Grade % Length Up/Down %	mi	
Calculate Flow Adjus	tments		•		
f _ρ Ε _Τ	1.00 1.5		E _R f _{HV} = 1/[1+P _T (E _T - 1) + P _R (E _R - 1)	1.2]0.980	
Speed Inputs			Calc Speed Adj and F	FS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	4 60.0	ft ft ramps/mi mph mph	f _{∟w} f _{LC} TRD Adjustment FFS	60.0	mph mph mph mph
LOS and Performanc	e Measures		Design (N)		
<u>Operational (LOS)</u> v _p = (V or DDHV) / (PHF x I x f _p) S D = v _p / S LOS	N x f _{HV} 1218 60.0 20.3 C	pc/h/ln mph pc/mi/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x N x f _p) S D = v _p / S Required Number of Lanes		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 7 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

General Inform		-		CTIONS W						
				Site Infor						
nalyst	MLS			eeway/Dir of Tr			Eastbound			
gency or Company	LJB Ir			Junction		E 55th				
ate Performed	2/27/2			risdiction			District 12			
nalysis Time Period		eak Hour		alysis Year		2034 E	xisting Con	dition		
roject Description C	<u>,01-90-19.5/2</u>	1.3 Safety Stu	dy							
nputs			har of Lanca N						1	
lpstream Adj Ramp			ber of Lanes, N	4					Downstre	am Adj
		Ramp Numbe	r of Lanes, N	1					Ramp	
Yes On		Acceleration L	ane Length, L _A	885					☐ Yes	On
☑ No □ Off		Deceleration Lane Length L _D								
		Freeway Volu	me, V _E	3660					🗹 No	Off
_{up} = ft		Ramp Volume		370					L _{down} =	ft
- P			-Flow Speed, S _{FF}	60.0						
′ _u = veh/h									V _D =	veh/h
			ow Speed, S _{FR}	45.0						
Conversion to		ier Base	Conditions	r	1	-			1	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	= x f _{HV} x f _p
reeway	3660	0.94	Level	4	0	0	980	1.00	:	3971
Ramp	370	0.94	Level	9	0	-	957	1.00		411
JpStream	010	0.07	20101		- ·	- 0.		1.00	<u> </u>	
DownStream										
		Merge Areas		8		-	Di	iverge Areas	8	
stimation of v	12				Estimation of v ₁₂					
	V ₁₂ = V _F ((P)								
-		ation 13-6 o	- 13 7)				V ₁₂ = V	/ _R + (V _F - V _F	_λ)P _{FD}	
EQ =					L _{EQ} = (Equation 13-12 or 13-13)					
P _{FM} =			ion (Exhibit 13-6)		P _{FD} = using Equation (Exhibit 13-7)					
/ ₁₂ =	661 pc				V ₁₂ = pc/h					
V_3 or V_{av34}		oc/h (Equati	on 13-14 or 13-		V ₃ or V _{av34} pc/h (Equation 13-14 or 13-17)					
	17)					> 2.7]Yes □No		,
s V ₃ or V _{av34} > 2,700]Yes ∏No		
					13 V 3 01 V av3			c/h (Equatio	n 13_16 1	3-18 or
s V ₃ or V _{av34} > 1.5 * V									1110-10, 1	0-10, 0i
s v ₃ or v _{av34} > 1.5 * v Yes,V _{12a} =	1588 p	oc/h (Equati	on 13-16, 13-		If Yes,V _{12a} =		13	-19)		
Yes,V _{12a} =	1588 p 18, or 1	oc/h (Equati	on 13-16, 13-				13	-19)		
Yes,V _{12a} =	1588 p 18, or 7 :ks	oc/h (Equati 13-19)			If Yes,V _{12a} = Capacity		13 ecks	-19)	nooitu	
Yes,V _{12a} =	1588 p 18, or 1	oc/h (Equati 13-19)	on 13-16, 13- Capacity	LOS F?	Capacity		13	(-19) Ca	pacity	LOS F
Yes,V _{12a} =	1588 p 18, or 7 :ks	oc/h (Equati 13-19)		LOS F?	Capacity	y Che	13 ecks	Exhibit 13-	8	LOS F?
Yes,V _{12a} =	1588 p 18, or 7 :ks	oc/h (Equati 13-19)		LOS F? No	Capacity	y Che	13 ecks	Exhibit 13-	8	LOS F
Yes,V _{12a} = Capacity Chec	1588 p 18, or 7 :ks Actual	oc/h (Equati 13-19)			Capacity V _F V _{FO} = V _F	y Che	13 ecks	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13-	8	LOS F
Yes,V _{12a} = Capacity Chec	1588 p 18, or 2 ks Actual 4382	oc/h (Equati 13-19) C Exhibit 13-8	Capacity		Capacity V_{F} $V_{FO} = V_{F}$ V_{R}	y Che	13 e cks Actual	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10	8	
Yes,V _{12a} = Capacity Chec	1588 p 18, or ks Actual 4382 Merge In	oc/h (Equati 13-19) Exhibit 13-8	apacity	No	Capacity V_{F} $V_{FO} = V_{F}$ V_{R}	y Che - V _R	13 ecks Actual g Diver	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer	8 8 - - -	
Yes,V _{12a} = Capacity Chec V _{FO}	1588 p 18, or :ks Actual 4382 Merge In Actual	oc/h (Equati 13-19) Exhibit 13-8 fluence A Max	apacity Irea Desirable	No Violation?	Capacity V_F $V_{FO} = V_F$ V_R Flow En	y Che - V _R	13 e cks Actual	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13- 10 ge Influer Max Des	8 8 - - -	
Yes,V _{12a} = Capacity Chec V _{FO}	1588 p 18, or ks Actual 4382 Merge In Actual 1999	oc/h (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8	Capacity	No	Capacity V_F $V_{FO} = V_F$ V_R Flow En V_{12}	- V _R	13 Actual g Diver	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8	8 8 7 7 8 8 8 8 8 9 7 9 7 8 9 9 9 9 9 9	Violation
Yes,V _{12a} = Capacity Chec V _{FO} Flow Entering V _{R12} Level of Service	1588 p 18, or ks Actual 4382 Merge In Actual 1999 ce Determ	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ V_R Flow En V_{12} Level of	y Che	13 Actual g Diver	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8 Exhibit 13-8	ace Area irable	Violation
Yes,V _{12a} = Capacity Chec V _{FO}	1588 p 18, or ks Actual 4382 Merge In Actual 1999 ce Determ	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ V_R Flow En V_{12} Level of	y Che	13 Actual g Diver	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8	ace Area irable	Violation
Yes, V_{12a} = Capacity Chec V_{FO} Flow Entering V_{R12} .evel of Servic D_R = 5.475 + 0.	1588 p 18, or :ks Actual 4382 Merge In Actual 1999 :e Determ .00734 v _R + 0	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ V_R Flow En V_{12} Level of	y Che	13 Actual g Diver Actual Actual i.252 + 0.1	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8 Exhibit 13-8	ace Area irable	Violation
Yes, V_{12a} = Capacity Chec V_{FO} Flow Entering V_{R12} evel of Servic D_R = 5.475 + 0. P_R = 15.3 (pc/mi/l	1588 p 18, or ks Actual 4382 Merge In Actual 1999 ce Determ .00734 v _R + 0	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ $V_{FO} = V_F$ V_R Flow En V_{12} Level of $D_R = (p)$	$\frac{V_{R}}{V_{R}}$	13 Actual g Diver Actual vice Det 252 + 0.1	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8 Exhibit 13-8	ace Area irable	Violation
Yes, V_{12a} = Capacity Chec V_{FO} Flow Entering V_{R12} Evel of Servic D_R = 5.475 + 0. R = 15.3 (pc/mi/l) OS = B (Exhibit 13)	1588 p 18, or ks Actual 4382 Merge In Actual 1999 Ce Determ .00734 v _R + 0 In) 3-2)	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ $V_{FO} = V_F$ V_R Flow En V_{12} Level of $D_R = (pr)$ LOS = (E	v Che - V _R terin / D _R = 4 c/mi/lr	13 Actual g Diver Actual vice Det .252 + 0.0 1) 13-2)	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8 Exhibit 13-8	ace Area irable	Violation
Yes, V_{12a} = Capacity Chec V_{FO} Flow Entering V_{R12} Evel of Servic D_R = 5.475 + 0. R = 15.3 (pc/mi/l) OS = B (Exhibit 13) Speed Determined	1588 p 18, or ks Actual 4382 Merge In Actual 1999 Ce Determ .00734 v _R + 0 in) 3-2) ination	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ $V_{FO} = V_F$ V_R Flow En V_{12} Level of $D_R = (pr)$ LOS = (ESpeed D	$\frac{V Che}{V_R}$ $\frac{V_R}{V_R}$ $\frac{V_R}{V_R}$ $\frac{V_R}{V_R}$	13 Actual g Diver Actual vice Det vice Det 13-2) minatio	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8 Exhibit 13-8	ace Area irable	Violation
Yes, V_{12a} = Capacity Chec V_{FO} Flow Entering V_{R12} evel of Servic D_R = 5.475 + 0. D_R = 15.3 (pc/mi/l) OS = B (Exhibit 13) Speed Determine I_S = 0.270 (Exibit	1588 p 18, or ks Actual 4382 Merge In Actual 1999 Ce Determ .00734 v _R + 0 In) 3-2) ination t 13-11)	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ $V_{FO} = V_F$ V_R Flow En V_{12} Level of $D_R = (p)$ LOS = (ESpeed D $D_s = (E)$	r Cherry Cherr	13 Actual g Diver Actual frice Det .252 + 0.1 13-2) minatio 3-12)	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8 Exhibit 13-8	ace Area irable	Violation
Yes, V_{12a} = Capacity Chec V_{FO} Flow Entering V_{R12} Evel of Servic D_R = 5.475 + 0. D_R = 15.3 (pc/mi/l OS = B (Exhibit 13) Speed Determine I_S = 0.270 (Exibit I_R = 55.1 mph (E	1588 p 18, or Ks Actual 4382 Merge In Actual 1999 Ce Determ .00734 v _R + 0 In) 3-2) ination t 13-11) fxhibit 13-11)	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ $V_{FO} = V_F$ V_R Flow Em V_{12} Level of $D_R = (p)$ LOS = (ESpeed D $S_R = (E)$	Check C	13 Actual g Diver Actual vice Det .252 + 0.0 1) 13-2) minatio 3-12) ibit 13-12)	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8 Exhibit 13-8	ace Area irable	Violation
Yes, V_{12a} = Capacity Chec V_{FO} Flow Entering V_{R12} evel of Servic D_R = 5.475 + 0. D_R = 15.3 (pc/mi/l) OS = B (Exhibit 13) Speed Determine I_S = 0.270 (Exibit	1588 p 18, or Ks Actual 4382 Merge In Actual 1999 Ce Determ .00734 v _R + 0 In) 3-2) ination t 13-11) fxhibit 13-11)	Ch (Equati 13-19) Exhibit 13-8 fluence A Max Exhibit 13-8 nination (apacity Area Desirable 4600:All if not F)	No Violation?	Capacity V_F $V_{FO} = V_F$ $V_{FO} = V_F$ V_R Flow En V_{12} Level of $D_R = (pr)$ LOS = (E)Speed D $D_s = (E)$ $S_R^=$ mp	Check C	13 Actual g Diver Actual frice Det .252 + 0.1 13-2) minatio 3-12)	Exhibit 13- Exhibit 13- Exhibit 13- Exhibit 13 10 ge Influer Max Des Exhibit 13-8 Exhibit 13-8	ace Area irable	Violation

0		IF 5 AND	RAMP JUN							
General Infori				Site Infor						
Analyst	MLS			eeway/Dir of Tra			Eastbound			
Agency or Company	LJB I			Inction		E 55th				
Date Performed	2/27/2			irisdiction			District 12			
Analysis Time Period		eak Hour		nalysis Year		2034 E	Existing Con	dition		
Project Description	CUY-90-19.5/2	1.3 Safety Stu	dy							
nputs		r								
Jpstream Adj Ramp		Freeway Num	per of Lanes, N	4					Downstre	am Adi
		Ramp Numbe	of Lanes, N	1					Ramp	,
🗌 Yes 🛛 🗌 On		Acceleration L	ane Length, L _A	885					□ Yes	On
			ane Length L _D							
☑ No 🛛 Off			- 0	5070					🗹 No	🗌 Off
- u		Freeway Volu		5270					I. =	ft
_{up} = ft		Ramp Volume		760					L _{down} =	it.
/ _u = veh/h		Freeway Free	Flow Speed, S _{FF}	60.0					V _D =	veh/h
u ven/m		Ramp Free-Fl	ow Speed, S _{FR}	45.0					D	
Conversion to	pc/h Und	ler Base (Conditions							
1	V			0/ Teurali	0/ 🗗		f	f		vf vf
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p		= x f _{HV} x f _p
reeway	5270	0.94	Level	4	0	0	.980	1.00	5	5719
Ramp	760	0.94	Level	1	0	0	.995	1.00		813
JpStream										
DownStream										
		Merge Areas						iverge Areas		
Estimation of	V ₁₂				Estimati	ion d	of v ₁₂			
	V ₁₂ = V _F	(P)								
_			10 7)				V ₁₂ = V	′ _R + (V _F - V _R)P _{FD}	
EQ =		ation 13-6 or			L _{EQ} =		(Equation 13-	12 or 13-1	3)
P _{FM} =			on (Exhibit 13-6)		P _{FD} =		u	sing Equatio	n (Exhibit 1	3-7)
/ ₁₂ =	664 p				V ₁₂ =		p	c/h		
V_3 or V_{av34}		oc/h (Equatio	on 13-14 or 13-		V_3^2 or V_{av34}		•	c/h (Equation 1	3-14 or 13-1	7)
	17)	_				>2 ⁻		Yes No		,
s V ₃ or V _{av34} > 2,700										
s V $_3$ or V $_{\rm av34}$ > 1.5 *	V ₁₂ /2 Ves	s 🗌 No			IS V ₃ or V _{av3}	$_{34} > 1.5$		Yes No		o 40
⁻ Yes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =			c/h (Equation -19)	n 13-16, 1	3-18, or
-	18, or	13-19)						-19)		
Capacity Che	cks				Capacity	y Ch	ecks			
	Actual	C	apacity	LOS F?			Actual	Cap	pacity	LOS F?
					V _F			Exhibit 13-8	8	
V	6520	Evhibit 12 0		No	$V_{FO} = V_{F}$	- V.		Exhibit 13-8	8	
V _{FO}	6532	Exhibit 13-8		No		R		Exhibit 13	_	
					V _R			10		
-low Entering	Merae In	fluence A	rea		Flow En	terir	na Diver	ge Influen		
	Actual		Desirable	Violation?		1	Actual	Max Desi		Violation
V _{R12}	3100	Exhibit 13-8	4600:All	No	V ₁₂	1	/ lotadi	Exhibit 13-8		violation.
				NO						
evel of Servi					1			erminatio		F)
	0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	10627 L _A		[ר _R = א	4.252 + 0.	0086 V ₁₂ - 0.	.009 L _D	
0 _R = 23.7 (pc/mi	/ln)				D _R = (p	c/mi/	n)			
OS = C (Exhibit 1	3-2)				LOS = (E	xhibi	t 13-2)			
Speed Determ					Speed D		,	n		
-										
M _S = 0.328 (Exib					3	xhibit '	'			
6 _R = 54.1 mph (I	Exhibit 13-11)						hibit 13-12)			
₀ = 55.6 mph (I	Exhibit 13-11)				Տ ₀ = mր	ph (Ex	hibit 13-12)			
	,				L					
S = 54.9 mph (I	Exhibit 13-13)				S= m	oh (Ex	hibit 13-13)			

Conoral Infa			RAMP JUN			1				
General Info				Site Infor						
Analyst	MLS			reeway/Dir of Tr			Eastbound			
Agency or Company Date Performed				unction			Luther King	Jr Dr		
Analysis Time Perio	2/27/			urisdiction			District 12	litian		
Project Description		Peak Hour		nalysis Year		2034 E	xisting Cond	lition		
nputs	001-90-19.3/2		у							
			ar of Lanca N	4						
Jpstream Adj Ramp)	1	per of Lanes, N	4					Downstre	am Adj
	_	Ramp Number	of Lanes, N	1					Ramp	
Yes O	n	Acceleration L	ane Length, L _A	520					🗌 Yes	On
☑ No 🛛 O	ff	Deceleration L	ane Length L _D							
		Freeway Volur	ne, V _r	3395					🗹 No	Off
_{up} = ft		Ramp Volume		620					L _{down} =	ft
αþ		1	Flow Speed, S _{FF}							
/ _u = veh/l	า	1		60.0					V _D =	veh/h
-		Ramp Free-Flo		45.0						
Conversion t	ii -	der Base (<u>Conditions</u>							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHI	F x f _{HV} x f _p
	3395	0.94	Loval	4	0		980	1.00		3684
reeway	620	0.94	Level	2	0	-	980			666
Ramp JpStream	620	0.94	Level	2	0	0.3	990	1.00		000
DownStream										
Jownoticam		Merge Areas					I Di	verge Areas		
stimation o		inorge / iroue			Estimati	ion o		voi go ra ouo		
		<u>, </u>					12			
	V ₁₂ = V _F						V ₁₂ = V	/ _R + (V _F - V _R))P _{FD}	
_{EQ} =	(Equ	ation 13-6 or	13-7)		L _{EQ} =			Equation 13-		(3)
P _{FM} =	0.135	using Equat	on (Exhibit 13-6)	P _{FD} =			sing Equatio		
/ ₁₂ =	496 p	c/h								5-1)
	1594	pc/h (Equatio	on 13-14 or 13-	-	V ₁₂ =		•	c/h		_
V_3 or V_{av34}	17)				$V_3^{}$ or $V_{av34}^{}$			c/h (Equation 1	3-14 or 13-1	17)
s V ₃ or V _{av34} > 2,7	00 pc/h? 🗌 Ye	s 🗹 No						Yes 🗌 No		
Is V ₃ or V _{av34} > 1.5					Is V_3 or V_{av3}	₈₄ > 1.5	* V ₁₂ /2	Yes 🗌 No		
			on 13-16, 13-		lf Yes,V _{12a} =			c/h (Equatior	n 13-16, 1	3-18, or
Yes,V _{12a} =		13-19)					13	-19)		
Capacity Ch	ecks				Capacity	y Che	ecks			
	Actual	C	apacity	LOS F?			Actual	Cap	pacity	LOS F?
					V _F			Exhibit 13-8	3	
	10-00				$V_{FO} = V_{F}$	<u>- v</u>		Exhibit 13-8	_	
V _{FO}	4350	Exhibit 13-8		No	VFO VF	• R				_
					V _R			Exhibit 13- 10	·	
- Iow Enterin	a Merae In	fluence A	roa		Flow En	torin	a Divor	ge Influen	Co Area	
	Actual		Desirable	Violation?		1	Actual	Max Desi		Violation
V	2139	Exhibit 13-8	4600:All		1/	+-'	wudi			
V _{R12}				No	V ₁₂			Exhibit 13-8		
evel of Serv		•	,		-			erminatio		: F)
D _R = 5.475 -	+ 0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A) _R = 4	.252 + 0.0	0086 V ₁₂ - 0.	009 L _D	
e _R = 18.6 (pc/r	ni/ln)				D _R = (p	c/mi/lr	ו)			
OS = B (Exhibit	13-2)					xhibit	13-2)			
Speed Deter					Speed D		,	n		
-										
	ibit 13-11)				3	xhibit 1	'			
R ⁼ 54.5 mph	(Exhibit 13-11)						ibit 13-12)			
₀ = 57.8 mph	(Exhibit 13-11)				S ₀ = mp	oh (Exh	ibit 13-12)			
-	(Exhibit 13-13)				S= mr	h (Evh	ibit 13-13)			
6 = 56.1 mph					0 – III,	, (ㄴ^!!	101(10-10)			

<u></u>		VIPS AND	RAMP JUN							
General Inform				Site Infor						
Analyst	MLS			eeway/Dir of Tr			Eastbound			
Agency or Company	LJB I			nction			Luther King	Jr Dr		
Date Performed	2/27/2			risdiction			District 12			
Analysis Time Period		eak Hour		alysis Year		2034 E	xisting Cond	ition		
Project Description	CUY-90-19.5/2	1.3 Safety Stu	dy							
nputs		1								
Jpstream Adj Ramp		Freeway Num	ber of Lanes, N	4					Downstrea	am Adj
		Ramp Number	r of Lanes, N	1					Ramp	,
🗌 Yes 🛛 🗌 On		Acceleration L	ane Length, L _A	520					□ Yes	On
			ane Length L _D							
🗹 No 🛛 🗌 Off		1	5	5545					🗹 No	🗌 Off
- #		Freeway Volu		5545					I. =	ft
_{up} = ft		Ramp Volume		1285					L _{down} =	it.
/ _u = veh/h		Freeway Free	-Flow Speed, S _{FF}	60.0					V _D =	veh/h
u ven/m		Ramp Free-Fl	ow Speed, S _{FR}	45.0					D	
Conversion to	pc/h Und	der Base (Conditions							
	V	PHF		% Truck	0/ Dv		f	f	v = V/PHF	vf vf
(pc/h)	(Veh/hr)		Terrain	%Truck	%Rv		f _{H∨}	f _p		^ 'HV ^ 'p
reeway	5545	0.94	Level	4	0	0.	980	1.00	6	017
Ramp	1285	0.94	Level	2	0	0.	990	1.00	1	381
JpStream										
DownStream										
		Merge Areas						verge Areas		
Estimation of	v ₁₂				Estimati	on o	of v ₁₂			
	V ₁₂ = V _F	(P _{EM})					V -V			
		ation 13-6 or	13-7)				•= •	_R + (V _F - V _R		
EQ =					L _{EQ} =			quation 13-		
P _{FM} =			ion (Exhibit 13-6)		P _{FD} =		us	sing Equatio	n (Exhibit 13	-7)
/ ₁₂ =	272 p				V ₁₂ =		рс	c/h		
V_3 or V_{av34}	2872 µ 17)	oc/h (Equatio	on 13-14 or 13-		V_3 or V_{av34}		рс	h (Equation 1	3-14 or 13-1	7)
s V ₃ or V _{av34} > 2,700	,					× 2,7	00 pc/h?	Yes No		
								Yes No		
s V_3 or V_{av34} > 1.5 *						-		:/h (Equation	n 13-16 13	8-18 or
[•] Yes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =		13-		11 10 10, 10	, 10, 01
-	18, or	13-19)			Capacity	, Ch	ooko	,		
Capacity Che					Capacity			0	14 .	
	Actual		apacity	LOS F?			Actual		pacity	LOS F?
					V _F			Exhibit 13-8	3	
V _{FO}	7398	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-8	3	
10					V _R			Exhibit 13-	-	
								10		
	Merge In	fluence A	rea	u.	Flow En	terin	g Diverg	ge Influen		
-low Entering		Max	Desirable	Violation?			Actual	Max Desi	rable	Violation
	Actual				1			Exhibit 13-8		
	Actual 3787	Exhibit 13-8	4600:All	No	V ₁₂					
V _{R12}	3787	Exhibit 13-8		No		Ser	vice Dete	erminatio	n (if not	F)
V _{R12} .evel of Servi	3787 ce Detern	Exhibit 13-8 nination (i	if not F)	No	Level of			erminatio		F)
V _{R12} .evel of Servi D _R = 5.475 + 0	3787 ce Detern 0.00734 v _R + 0	Exhibit 13-8 nination (i	if not F)	No	Level of	D _R = 4	1.252 + 0.0			F)
V _{R12} .evel of Servi D _R = 5.475 + (_R = 31.1 (pc/mi	3787 ce Detern 0.00734 v _R + 0 ⁄ln)	Exhibit 13-8 nination (i	if not F)	No	Level of D _R = (pr	D _R = 4 c/mi/l	I.252 + 0.0 n)	erminatio		F)
V _{R12} .evel of Servi D _R = 5.475 + (v _R = 31.1 (pc/mi OS = D (Exhibit 1	3787 ce Detern).00734 v _R + 0 /ln) 3-2)	Exhibit 13-8 nination (i	if not F)	No	Level of [D _R = (pr LOS = (E	D _R = 4 c/mi/l xhibit	I.252 + 0.0 n) 13-2)	erminatio 1086 V ₁₂ - 0.		F)
D _R = 5.475 + 0 D _R = 31.1 (pc/mi	3787 ce Detern).00734 v _R + 0 /ln) 3-2)	Exhibit 13-8 nination (i	if not F)	No	Level of D _R = (pr	D _R = 4 c/mi/l xhibit	I.252 + 0.0 n) 13-2)	erminatio 1086 V ₁₂ - 0.		F)
$\frac{V_{R12}}{D_R = 5.475 + (0.25)}$ $\frac{V_R}{D_R} = 31.1 (pc/mi)$ $\frac{V_R}{D_R} = 0 (Exhibit 1)$ $\frac{V_R}{D_R} = 0 (Exhibit 1)$	3787 ce Detern).00734 v _R + (/In) 3-2) ination	Exhibit 13-8 nination (i	if not F)	No	Level of [] D _R = (pr LOS = (E Speed D	D _R = 4 c/mi/l xhibit	I.252 + 0.0 n) 13-2) minatior	erminatio 1086 V ₁₂ - 0.		F)
$\frac{V_{R12}}{D_R = 5.475 + 0}$ $\frac{D_R = 31.1 (pc/mi)}{OS = D (Exhibit 1)}$ $\frac{D_R = 0.446 (Exib)}{D_R = 0.446 (Exib)}$	3787 ce Detern).00734 v _R + 0 /In) 3-2) bination it 13-11)	Exhibit 13-8 nination (i	if not F)	No	Level of D _R = (pr LOS = (E Speed D D _s = (E)	D _R = 4 c/mi/l Exhibit Deter xhibit 1	I.252 + 0.0 n) 13-2) minatior	erminatio 1086 V ₁₂ - 0.		F)
$\frac{V_{R12}}{D_R = 5.475 + 0}$ $\frac{1}{P_R} = 31.1 \text{ (pc/min)}$ $\frac{1}{P_S} = 0.446 \text{ (Exib)}$ $R^{=} 52.0 \text{ mph (Exist)}$	3787 ce Detern 0.00734 v _R + (/In) 3-2) bination it 13-11) Exhibit 13-11)	Exhibit 13-8 nination (i	if not F)	No	Level of D _R = (pr LOS = (E Speed D D _s = (E) S _R = (mp	D _R = 2 c/mi/l xhibit Deter xhibit 1 ph (Exh	I.252 + 0.0 n) 13-2) minatior 3-12) nibit 13-12)	erminatio 1086 V ₁₂ - 0.		F)
$\frac{V_{R12}}{D_R = 5.475 + (0.5)}$ $\frac{D_R = 31.1 (pc/mi)}{D_S = D (Exhibit 1)}$ $\frac{D_R = 0.446 (Exib)}{D_R = 52.0 mph (E_0 = 55.3 mph (E_0 = 5$	3787 ce Detern).00734 v _R + 0 /In) 3-2) bination it 13-11)	Exhibit 13-8 nination (i	if not F)	No	Level of D _R = (pr LOS = (E Speed D D _s = S _R = mp S ₀ = mp	D _R = 4 c/mi/l xhibit Deter xhibit 1 ph (Exh	I.252 + 0.0 n) 13-2) minatior 3-12)	erminatio 1086 V ₁₂ - 0.		F)

General Infor			RAMP JUN	Site Infor						
							()))//!	1		
Analyst Agency or Company	MLS LJB I			reeway/Dir of Tr unction		IR-90 E 72n	Westbound	1		
Date Performed	LJB 1 2/27/			urisdiction			District 12			
Analysis Time Period		Peak Hour		nalysis Year			Existing Con	dition		
Project Description				narysis real		20041		ultion		
Inputs	001 00 10.0/2		ay							
•		Freeway Num	ber of Lanes, N	4					Deveration	A -l'
Jpstream Adj Ramp		Ramp Numbe		1					Downstre Ramp	am Adj
Yes Or	า	· ·		735						_
		1	ane Length, L _A	755					🗌 Yes	On
No Of	f		ane Length L _D						🗹 No	🗌 Off
- 4		Freeway Volu		6160					I. =	ft
_ _{up} = ft		Ramp Volume	i v	190					L _{down} =	it.
V _u = veh/h	n	1	-Flow Speed, S _{FF}	60.0					V _D =	veh/h
u com	•	Ramp Free-Fl	ow Speed, S _{FR}	45.0					D	
Conversion t	o pc/h Un	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHI	F x f _{HV} x f _p
Freeway	(Ven/nr) 6160	0.94	Level	4	0	0	.980	1.00		6684
Ramp	190	0.94	Level	4	0	_	.980	1.00	-	206
UpStream	100	0.04	20101		Ů	+	.000	1.00		200
DownStream										
		Merge Areas						iverge Areas		
Estimation o	f v ₁₂				Estimati	ion d	of v ₁₂			
	V ₁₂ = V _F	(P _{EM})					\/ _ \		\D	
e _{eq} =		ation 13-6 or	13-7)		_			/ _R + (V _F - V _R		
P _{FM} =			ion (Exhibit 13-6)	L _{EQ} =			Equation 13-		
V ₁₂ =	1284			/	P _{FD} =			ising Equatio	n (Exhibit 1	3-7)
		•	on 13-14 or 13	_	V ₁₂ =		•	oc/h		
$V_3^{}$ or $V_{av34}^{}$	17)	po (=qaaa			$V_3^{}$ or $V_{av34}^{}$			oc/h (Equation 1	3-14 or 13-1	17)
Is V ₃ or V _{av34} > 2,70	0 pc/h? 🗌 Ye	s 🗹 No]Yes ∏No		
Is V ₃ or V _{av34} > 1.5	* V ₁₂ /2 🔽 Ye	s 🗌 No			Is V ₃ or V _{av3}	₃₄ > 1.5		Yes 🗌 No		
lf Yes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =	:		oc/h (Equation 3-19)	n 13-16, 1	3-18, or
		13-19)			0			-10)		
Capacity Che	Ϊ(1			Capacit	y Ch				
	Actual		apacity	LOS F?			Actual		bacity	LOS F?
					V _F			Exhibit 13-8	_	_
V _{FO}	6890	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-8	-	
					V _R			Exhibit 13	-	
Flow Entorin	l n Marna In	fluonoo	*22			40 11		10		
Flow Entering	Actual	r	Desirable	Violation?	riow En		Actual	ge Influen Max Desi		Violation
V	2879	Exhibit 13-8	4600:All	No	V ₁₂	+	notual	Exhibit 13-8		violation
V _{R12} Level of Serv				INU				terminatio	n (if not	()
			/		1					
	0.00734 v _R + (0.0070 v ₁₂ - 0.1	JUUZI LA					0086 V ₁₂ - 0.	.009 L _D	
D _R = 23.2 (pc/m						oc/mi/	,			
OS = C (Exhibit	,				· · ·		t 13-2)			
Speed Deterr	nination				Speed L	Deter	rminatio	n		
M _S = 0.324 (Exi	bit 13-11)				D _s = (E	xhibit	13-12)			
-	(Exhibit 13-11)				S _R = m	ph (Ex	hibit 13-12)			
	(Exhibit 13-11)				S ₀ = m	ph (Ex	hibit 13-12)			
•	(Exhibit 13-13)				-	• •	hibit 13-13)			

			KAMP JUN	CTIONS W	/ORKSH	EET				
General Info				Site Infor						
Analyst	MLS		Fr	eeway/Dir of Tr		IR-90	/ Westboun	d		
Agency or Company	/ LJB li	nc.	Ju	Inction		E 72n	id St			
Date Performed	2/27/2	2015	Ju	irisdiction		ODOT	F District 12			
Analysis Time Perio		eak Hour		nalysis Year		2034	Existing Co	ndition		
Project Description	CUY-90-19.5/2	1.3 Safety Stud	у							
nputs		ì							ir.	
Jpstream Adj Ramp)	Freeway Numb	er of Lanes, N	4					Downstrea	am Adj
		Ramp Number	of Lanes, N	1					Ramp	
Yes O	n	Acceleration La	ane Length, L_{A}	735					Yes	On
	<i></i>	Deceleration L	ane Length L							
No Of	1	Freeway Volun	D	4490					🗹 No	Off
_{up} = ft		Ramp Volume,		140					L _{down} =	ft
up			IX						down	
/,, = veh/ł	า		Flow Speed, S_{FF}	60.0					V _D =	veh/h
4		Ramp Free-Flo	· 11	45.0						
Conversion t	o pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4490	0.94	Level	4	0		0.980	1.00	_	872
Ramp	140	0.94	Level	2	0).990).990	1.00	_	50
UpStream	140	0.94	Level	2	0	+	J.990	1.00	-	150
DownStream									_	
Souriourouni		Merge Areas						Diverge Areas	<u>I</u>	
Estimation o		<u> </u>			Estimat	tion				
		(D)								
_	$V_{12} = V_{F}$		40.7				V ₁₂ =	V _R + (V _F - V	/ _R)P _{FD}	
EQ =		ation 13-6 or	-		L _{EQ} =			(Equation 1	3-12 or 13-1	3)
P _{FM} =	0.199	using Equati	on (Exhibit 13-6)		P _{FD} =			using Equat	ion (Exhibit 13	-7)
/ ₁₂ =	970 po				V ₁₂ =			pc/h		
V_3 or V $_{av34}$		oc/h (Equatio	n 13-14 or 13-		V_3^{12} or V_{av34}			•	n 13-14 or 13-1	7)
	17)					>2		⊇Yes □N		.,
ls V ₃ or V _{av34} > 2,70										
ls V ₃ or V _{av34} > 1.5					1 * *	•			o ion 13-16, 13	8-18 or
f Yes,V _{12a} =		oc/h (Equatio	n 13-16, 13-		If Yes,V _{12a} :	=		3-19)	1011 10-10, 1	-10, 01
120	18, or	13-19)			Capacit			/		
Capacity Che			an a site i		Capacit	y cr	r		an a ait (
	Actual		apacity	LOS F?	V		Actual		apacity	LOS F?
					V _F			Exhibit 1		
V _{FO}	5022	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 1		
					V _R			Exhibit 1	3-	
		<u> </u>						10		
Flow Enterin				Violotion	FIOW Er	nterii	-		ence Area	Violation
	Actual		esirable	Violation?		_	Actual	Max De	-	Violation?
V _{R12}	2098	Exhibit 13-8	4600:All	No	V ₁₂			Exhibit 13-8		
Level of Serv			,						on (if not	F)
D _R = 5.475 +	- 0.00734 v _R + 0).0078 V ₁₂ - 0.0	0627 L _A			D _R =	4.252 + 0	.0086 V ₁₂ -	0.009 L _D	
0 _R = 17.2 (pc/n	ni/ln)				D _R = (oc/mi/	′ln)			
.OS = B (Exhibit	13-2)				1		, it 13-2)			
Speed Deteri					Speed I			on an		
							au			
					1					
M _s = 0.287 (Ex	-									
•	(Exhibit 13-11)									

A		MP5 AND	RAMP JUN							
General Infor				Site Infor						
Analyst	MLS		Fn	eeway/Dir of Tr			/ Westbound			
Agency or Company	LJB I			nction		E 55th	St			
Date Performed	2/27/	2015		risdiction		ODOT	District 12			
Analysis Time Period		eak Hour		nalysis Year		2034 E	Existing Cond	dition		
Project Description	CUY-90-19.5/2	1.3 Safety Stu	dy							
nputs										
Jpstream Adj Ramp		Freeway Num	ber of Lanes, N	4					Downstre	am Adi
, pod od i i i i i i i i i i i i i i		Ramp Numbe	r of Lanes, N	1					Ramp	
🗌 Yes 🛛 🗌 Or	l	Acceleration I	ane Length, LA	565						
			ane Length L _D	000					🗌 Yes	On
🗹 No 🛛 🗌 Of	F		- 0	5040					🗹 No	Off
- 4		Freeway Volu		5610						ft
up = ft		Ramp Volume	IX .	190					L _{down} =	it.
/ _u = veh/h		Freeway Free	-Flow Speed, S _{FF}	60.0					V _D =	veh/h
u ven/n		Ramp Free-Fl	ow Speed, S _{FR}	45.0					D	
Conversion t	o pc/h Und	der Base	Conditions							
	V			0/ Teu -1-	0/ D		f	f		Evf vf
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p		= x f _{HV} x f _p
reeway	5610	0.94	Level	4	0	0	.980	1.00	6	5087
Ramp	190	0.94	Level	9	0	0	.957	1.00		211
UpStream										
DownStream										
		Merge Areas						verge Areas		
Estimation of	[•] v ₁₂				Estimati	ion c	of v ₁₂			
	V ₁₂ = V _F	(P _{EM})					V - V			
		ation 13-6 or	13-7)					′ _R + (V _F - V _R	5	
EQ =					L _{EQ} =			Equation 13-		
P _{FM} =			ion (Exhibit 13-6)		P _{FD} =		u	sing Equatio	on (Exhibit 1	3-7)
- ₁₂ =	1165				V ₁₂ =		р	c/h		
V_3 or V_{av34}	2461 17)	oc/h (Equation	on 13-14 or 13-		$V_3^{}$ or $V_{av34}^{}$		р	c/h (Equation ?	13-14 or 13-1	17)
Is V ₃ or V _{av34} > 2,70	,	No				2,7	700 pc/h?	Yes No		
								Yes No		
ls V ₃ or V _{av34} > 1.5 *								c/h (Equatio	n 13-16 1	3-18 or
fYes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =	:		-19)		0 10, 01
-	18, or	13-19)			Capacit	v Ch	ooko	,		
Capacity Che	ir -				Capacity					
	Actual		apacity	LOS F?			Actual		pacity	LOS F?
					V _F			Exhibit 13-	_	
V _{FO}	6298	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-	8	
					V _R			Exhibit 13	-	
								10		
low Entering	1			Î.	Flow En	1	_	ge Influer		
	Actual	i	Desirable	Violation?		—	Actual	Max Des	irable	Violation
V _{R12}	2645	Exhibit 13-8	4600:All	No	V ₁₂			Exhibit 13-8		
evel of Serv	ice Detern	nination (if not F)		Level of	Ser	vice Det	erminatio	n (if not	F)
D _R = 5.475 +	0.00734 v _R + ().0078 V ₁₂ - 0.0	0627 L ₄		[D _R = 4	4.252 + 0.0	0086 V ₁₂ - 0	.009 L _n	
_R = 22.5 (pc/m		12				c/mi/l		12	U	
OS = C (Exhibit										
1	,				· · · ·		t 13-2)			
Speed Detern	nination				Speed D			n		
1 _S = 0.325 (Exi	oit 13-11)				D _s = (E	xhibit '	13-12)			
-	Exhibit 13-11)				S _R = m	ph (Ex	hibit 13-12)			
	Exhibit 13-11)					ph (Ex	hibit 13-12)			
						, ,	···-)			
• •	Exhibit 13-13)				S= mi	nh /⊑v	hibit 13-13)			

A		VIPS AND	RAMP JUN							
General Info				Site Infor						
Analyst	MLS		Fr	eeway/Dir of Tr			Westbound			
Agency or Company	-			Inction		E 55th				
Date Performed	2/27/			irisdiction		ODOT	District 12			
Analysis Time Peric		eak Hour		nalysis Year		2034 E	xisting Con	dition		
Project Description	CUY-90-19.5/2	21.3 Safety Stu	dy							
nputs									~	
Jpstream Adj Ram	h	Freeway Num	ber of Lanes, N	4					Downstre	am ∆di
	, ,	Ramp Numbe	r of Lanes, N	1					Ramp	ann Aaj
🗌 Yes 🛛 🗋 O	n	I '	ane Length, L _A	565					· ·	
			71	505					🗌 Yes	On
🗹 No 🛛 🗆 O	ff		ane Length L _D						🗹 No	Off
		Freeway Volu		3870						сı
- _{up} = ft		Ramp Volume	, V _R	300					L _{down} =	ft
		Freeway Free	Flow Speed, S _{FF}	60.0					V _D =	voh/h
/ _u = veh/	h	Ramp Free-Fl	ow Speed, S _{FR}	45.0					v _D -	veh/h
Conversion	to no/h Un		IIX	10.0						
2011/01/21/21/011				1					<u> </u>	
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	= x f _{HV} x f _p
Freeway	3870	0.94	Level	4	0	0	980	1.00		1199
Ramp	300	0.94	Level	8	0	-	962	1.00		332
UpStream	300	0.94	Levei	0	0	- 0.	902	1.00		33Z
DownStream		<u>├</u>								
Soundadam	_	Merge Areas					I	verge Areas		
Estimation o		line ge r in eue			Estimati	ion o				
							• • 12			
	V ₁₂ = V _F	(P _{FM})					V ₁₂ = V	′ _R + (V _F - V _R)P _{ED}	
-EQ =	(Equa	ation 13-6 or	13-7)		=			Equation 13-	5	3)
P _{FM} =	0.176	using Equat	ion (Exhibit 13-6)		L _{EQ} = D -					
/ ₁₂ =	740 p		, , , , , , , , , , , , , , , , , , ,		P _{FD} =			sing Equatio		5-7)
			on 13-14 or 13-		V ₁₂ =		•	c/h		
V_3 or V_{av34}	1723		1113-14 01 13-		$V_3^{}$ or $V_{av34}^{}$		р	c/h (Equation 1	13-14 or 13-1	17)
ls V ₃ or V _{av34} > 2,7	,	s 🔽 No			Is V ₃ or V _{av3}	₃₄ > 2,7	00 pc/h? 🗌	Yes 🗌 No		
ls V ₃ or V _{av34} > 1.5					Is V ₂ or V ₂₁₂	> 1.5	* V ₁₀ /2	Yes 🗌 No		
			- 10 10 10					c/h (Equatio	n 13-16, 1	3-18, or
f Yes,V _{12a} =	18, or		on 13-16, 13-		If Yes,V _{12a} =		13	-19) ່	,	,
Capacity Ch		10-10)			Capacity	v Ch	ocks			
Supacity On	ir		anaaih					Co	nanity	
	Actual	H i	apacity	LOS F?	N/		Actual		pacity	LOS F?
					V _F			Exhibit 13-	_	
V _{FO}	4531	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-	8	
10					V _R			Exhibit 13	-	
								10		
Flow Enterin	g Merge In	fluence A	rea		Flow En	terin	g Diver	ge Influen	ice Area	
	Actual	Max	Desirable	Violation?		/	Actual	Max Des	irable	Violation
V _{R12}	2011	Exhibit 13-8	4600:All	No	V ₁₂		T	Exhibit 13-8		
Level of Serv	ice Detern	nination (f not F)			Ser	ice Def	erminatio	n (if not	F)
	+ 0.00734 v _R + (,					0086 V ₁₂ - 0		,
		12 - 0.0	A					12 ⁻⁰		
) _R = 17.5 (pc/i	-					c/mi/li	,			
OS = B (Exhibi	t 13-2)				LOS = (E	xhibit	13-2)			
Speed Deter	mination				Speed D)eter	minatio	n		
						xhibit 1				
.	(ibit 13-11)						,			
	(Exhibit 13-11)					-	ibit 13-12)			
₀ = 57.3 mph	(Exhibit 13-11)				S ₀ = mp	ph (Exh	ibit 13-12)			
- 50.1 marsh	(Exhibit 13-13)				S= mu	oh (Exh	ibit 13-13)			
6 = 56.1 mph	(

General lı	nform	RAN	-		Site Infor	mation					
	nonn						10.00	/ - // ·			
Analyst		MLS			reeway/Dir of Tr			/ Eastbound			
Agency or Com Date Performe		LJB II			unction			Luther King	Jr Dr		
		6/19/2			urisdiction			District 12			
Analysis Time I			eak Hour 1.3 Safety Stu		nalysis Year		2034 8	Build Condition	Dri		
nputs		J1-90-19.3/2		цу							
			Freeway Num	ber of Lanes, N	4						
Jpstream Adj F	Ramp		Ramp Number							Downstre	am Adj
Yes	On			-	1					Ramp	
				ane Length, L _A	520					🗌 Yes	🗌 On
✓ No	Off		Deceleration L	ane Length L _D						🗹 No	Off
			Freeway Volu	ne, V _F	3335						
up =	ft		Ramp Volume	, V _R	680					L _{down} =	ft
			Freewav Free	Flow Speed, S _{FF}	60.0						
/ _u = v	/eh/h			ow Speed, S _{FR}	45.0					V _D =	veh/h
onvorci	on to			Conditions	40.0						
	<u> 01 ווכ</u>	V		Somutions						<u> </u>	
(pc/h)		(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHI	= x f _{HV} x f _p
reeway		3335	0.94	Level	4	0	0	.980	1.00	;	3619
Ramp		680	0.94	Level	2	0	_	.990	1.00	-	731
JpStream											
DownStream											
			lerge Areas						verge Areas		
stimatio	n of v	12				Estimati	ion d	of v ₁₂			
		V ₁₂ = V _F ((P _{EM})					V - V			
_{EQ} =			ation 13-6 or	13-7)					_R + (V _F - V _R	5	
				ion (Exhibit 13-6)	L _{EQ} =			Equation 13-		
FM =)	P _{FD} =		u	sing Equatio	on (Exhibit 1	3-7)
1 ₁₂ =		458 pc		10.11.10		V ₁₂ =		p	c/h		
V_3 or V_{av34}		1580 p 17)	oc/n (Equation	on 13-14 or 13	-	V_3 or V_{av34}		p	c/h (Equation 1	13-14 or 13-	17)
s V ₃ or V _{av34} >	> 2 700 n					Is V_3 or V_{av}	34 > 2,7	700 pc/h? 🗌	Yes 🗌 No		
							• •		Yes No		
s V ₃ or V _{av34} >	× 1.5 v ₁	-		10.10.10					c/h (Equatio	n 13-16. 1	3-18. or
Yes,V _{12a} =		1447 p 18, or		on 13-16, 13-		If Yes,V _{12a} =			-19)		,
Capacity	Check		10 10)			Capacit	v Ch	ecks			
Japaenty		Actual	L C	apacity	LOS F?		,	Actual	Car	pacity	LOS F?
		/ lotaul	Ť	apuoliy	20011	V _F		7101000	Exhibit 13-		20011
							<u></u>		Exhibit 13-	_	
V _{FO}		4350	Exhibit 13-8		No	V _{FO} = V _F	- v _R				
						V _R			Exhibit 13 10	-	
low Ente	vrina l	lorgo In	fluence A	<i>r</i> 02			toriu		ge Influen		
IOW EIILE	aniy i	Actual		Desirable	Violation?			Actual	Max Desi		Violation
V _{R12}		2178	Exhibit 13-8	4600:All	No	V ₁₂	+		Exhibit 13-8		VIOIAUUII
		-			INU						
			nination (i						erminatio		r)
i v			.0078 V ₁₂ - 0.0	10627 L _A			υ _R = 4	4.252 + 0.0	0086 V ₁₂ - 0	.009 L _D	
_R = 18.9	(pc/mi/ln)				D _R = (p	c/mi/	ln)			
OS = B (E	xhibit 13-	2)				LOS = (E	Exhibi	t 13-2)			
Speed De						· · · · ·		rminatio	n		
							xhibit				
•	9 (Exibit	-						hibit 13-12)			
	mnh (Ev	$n_{1}n_{1} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$				r∼r III	µıı(⊏X	11101(10-1Z)			
		hibit 13-11)									
₀ = 57.9	mph (Ex	hibit 13-11)				S ₀ = m		hibit 13-12)			
₀ = 57.9	mph (Ex	-				S ₀ = m		hibit 13-12) hibit 13-13)			

0		VIPS AND	RAMP JUN			<u> </u>			
General Infori				Site Infor					
Analyst	MLS			eeway/Dir of Tr		R-90 / Eastbo			
gency or Company	LJB I			nction		Martin Luther	-		
ate Performed	6/19/2			risdiction		ODOT Distric			
Analysis Time Period		eak Hour		alysis Year	2	2034 Build Co	ondition		
Project Description	CUY-90-19.5/2	1.3 Safety Stu	dy						
nputs		r							
Jpstream Adj Ramp		Freeway Num	ber of Lanes, N	4				Downsti	ream Adj
		Ramp Number	r of Lanes, N	1				Ramp	
🗌 Yes 🛛 🗌 On		Acceleration L	ane Length, L₄	520				Yes	On
			ane Length L _D						
✓ No Off		Freeway Volu	- 0	5385				🗹 No	Off
-up = ft								L _{down} =	ft
_{-up} = ft		Ramp Volume	IX .	1445				-down	
/ _u = veh/h		Freeway Free	-Flow Speed, S _{FF}	60.0				V _D =	veh/h
u venin		Ramp Free-Fl	ow Speed, S _{FR}	45.0					
Conversion to	pc/h Und	der Base (Conditions						
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/Pł	HF x f _{HV} x f _c
,	(Veh/hr)						· · ·		··· P
Freeway	5385	0.94	Level	4	0	0.980	1.00	_	5843
Ramp	1445	0.94	Level	2	0	0.990	1.00		1553
UpStream								_	
DownStream				-					
Tadius adia wa af		Merge Areas			F atimati		Diverge Area	s	
Estimation of	v ₁₂				Estimati	on of v ₁₂	2		
	V ₁₂ = V _F	(P _{FM})				V	, = V _R + (V _F - '	V)P	
- _{EQ} =	(Egua	ation 13-6 or	13-7)		_	* 12			10)
P _{FM} =			ion (Exhibit 13-6)		L _{EQ} =		(Equation 1		
/ ₁₂ =	138 p				P _{FD} =		using Equa	ition (Exhibit	13-7)
			on 12 14 or 12		V ₁₂ =		pc/h		
V_3 or V_{av34}	2052 p 17)	oc/n (⊏qualio	on 13-14 or 13-		$V_3^{}$ or $V_{av34}^{}$		pc/h (Equatio	n 13-14 or 13	8-17)
Is V ₃ or V _{av34} > 2,700	,				Is V ₃ or V _{av3}	₄ > 2,700 pc/ł	n? 🗌 Yes 🔲 N	lo	
Is V_3 or $V_{av34} > 1.5 *$					Is V ₂ or V ₂₁₂	, > 1.5 * V ₁₀ /2	2 🗌 Yes 🔲 N	lo	
			- 40 40 40				pc/h (Equa		13-18. or
f Yes,V _{12a} =	2337 p 18, or		on 13-16, 13-		If Yes,V _{12a} =		13-19)	,	,
Capacity Che		10-10)			Capacity	Charks			
	Actual		apacity	LOS F?		Act	ñ.	Capacity	LOS F
	Actual	l i	apacity	LUGT	V	Au		<u> </u>	2031
					V _F		Exhibit 1		_
V _{FO}	7396	Exhibit 13-8		No	V _{FO} = V _F -	- V _R	Exhibit 1	3-8	
					V _R		Exhibit	13-	
							10		
Flow Entering					Flow En	-	verge Influ		
	Actual	1 I I I I I I I I I I I I I I I I I I I	Desirable	Violation?		Actual		esirable	Violation
V _{R12}	3890	Exhibit 13-8	4600:All	No	V ₁₂		Exhibit 13-		
Level of Servi	ce Detern	nination (i	if not F)		Level of	Service	Determinat	ion (if no	ot F)
).0078 V ₁₂ - 0.0				D _R = 4.252	+ 0.0086 V ₁₂ -	0.009 L _D	
0 _R = 31.8 (pc/mi		12				c/mi/ln)	12	U	
	-					,			
.OS = D (Exhibit 1						xhibit 13-2)			
Snood Dotorm	ination				Speed D	etermina	ntion		
Speed Determ					D _s = (E)	khibit 13-12)			
	it 13-11)				3				
M _S = 0.465 (Exib						h (Exhibit 13-	·12)		
M _S = 0.465 (Exib S _R = 51.6 mph (I	Exhibit 13-11)				S _R = mp		-		
$M_{\rm S}^{}$ = 0.465 (Exib $B_{\rm R}^{}$ = 51.6 mph (I $B_{\rm 0}^{}$ = 55.5 mph (I					S _R = mp S ₀ = mp	oh (Exhibit 13 oh (Exhibit 13 oh (Exhibit 13	-12)		

General Infor	mation		RAMP JUN	Site Infor	mation					
	MLS			eeway/Dir of Tr			/ Westbound	4		
Agency or Company		20		nction						
Date Performed	6/19/2			risdiction			n Luther King F District 12	J JI DI		
Analysis Time Period		eak Hour		alysis Year			Build Condit	ion		
Project Description						2034				
nputs	001 00 10.0/2		<i>.</i> <u>y</u>							
		Freeway Num	per of Lanes, N	4					L	
Jpstream Adj Ramp		Ramp Number		4					Downstre	eam Adj
Yes Or				1					Ramp	
			ane Length, L _A	1350					🗌 Yes	🗌 On
🗹 No 🛛 🗌 Of	f	Deceleration L	ane Length L _D						🗹 No	Off
		Freeway Volur	ne, V _F	5810					NO NO	
- _{up} = ft		Ramp Volume	. V _D	350					L _{down} =	ft
			Flow Speed, S _{FF}	60.0						
/ _u = veh/h									V _D =	veh/h
		Ramp Free-Flo	110	30.0						
Conversion t	ii	ler Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Frooway	` <i>′</i>	0.04	Loval	4	0			•	 	r
Freeway	5810	0.94	Level		0	-).980	1.00	-	6304
Ramp UpStream	350	0.94	Level	2	0	+).990	1.00		376
DownStream						_				
DownStream	<u> </u>	lerge Areas					I	viverge Areas		
Estimation of		nerge Areas			Estimat	ion		Averge Areas		
					Lotinut		12			
	V ₁₂ = V _F ((P _{FM})					V ₁₂ = '	V _R + (V _F - V _R)P _{FD}	
- _{EQ} =	(Equa	ation 13-6 or	13-7)					Equation 13-		13)
P _{FM} =	0.171	using Equati	on (Exhibit 13-6)		L _{EQ} = P =			using Equation		
/ ₁₂ =	1077 p	oc/h			P _{FD} =					5-7)
			on 13-14 or 13-		V ₁₂ =			oc/h		
V_3 or V_{av34}	17)				$V_3^{}$ or $V_{av34}^{}$			pc/h (Equation 1	13-14 or 13-	17)
Is V ₃ or V _{av34} > 2,70	0 pc/h? 🗍 Yes	No			Is V_3 or V_{av}	₃₄ > 2,	700 pc/h? [Yes 🗌 No		
Is V_3 or $V_{av34} > 1.5$					Is V_3 or V_{av}	₃₄ > 1.	5 * V ₁₂ /2	Yes 🗌 No		
			on 13-16, 13-		If Yes,V _{12a} =	• ·		oc/h (Equatio	n 13-16, 1	3-18, or
f Yes,V _{12a} =	18, or		лт то-то, то-		11 103, v _{12a} -	-	1:	3-19)		
Capacity Che		/			Capacit	v Ch	necks			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F?
	710100	Ĩ	apaony		V _F		10000	Exhibit 13-	<u> </u>	
						V			_	
V _{FO}	6680	Exhibit 13-8		No	V _{FO} = V _F	- v _R		Exhibit 13-		
					V _R			Exhibit 13	-	
		<u> </u>						10		
Flow Entering	1			Violetier?	riow En			rge Influen		
	Actual			Violation?		+	Actual	Max Des	ITADIE	Violation
V _{R12}	2897	Exhibit 13-8	4600:All	No	V ₁₂			Exhibit 13-8		
Level of Serv								terminatio	•	t F)
D _R = 5.475 +	0.00734 v _R + 0	.0078 V ₁₂ - 0.0	0627 L _A			D _R =	4.252 + 0	.0086 V ₁₂ - 0	.009 L _D	
0 _R = 19.4 (pc/m	ii/ln)				D _R = (p	oc/mi/	'ln)			
.OS = B (Exhibit	-						, it 13-2)			
,	,									
Speed Detern					Speed L			11		
M _S = 0.311 (Exi	bit 13-11)				3		13-12)			
S _R = 54.4 mph	(Exhibit 13-11)				S _R = m	ph (Ex	(hibit 13-12)			
	(Exhibit 13-11)				S ₀ = m	ph (Ex	hibit 13-12)			
•	(Exhibit 13-13)				Ŭ	• •	(hibit 13-13)			
	(····································				E	···· \ - ^				

General Inform Analyst			RAMP JUN	Site Infor						
Naivst			F-							
•	MLS			eeway/Dir of Tr			Westbound			
Agency or Company Date Performed	LJB I 6/19/2			nction risdiction			uther King	JrDr		
Analysis Time Period		Peak Hour		nalysis Year			uild Conditi	on		
Project Description						2004 D				
nputs			-)							
Jpstream Adj Ramp		Freeway Numl	per of Lanes, N	4					Downstre	am Adi
		Ramp Number	of Lanes, N	1					Ramp	ann Auj
🗌 Yes 🗌 On	1	Acceleration L	ane Length, L _A	1350					Yes	On
		Deceleration L	71							
☑ No 🗌 Off	ľ	Freeway Volur	- 0	3990					🗹 No	Off
- _{up} = ft		Ramp Volume		500					L _{down} =	ft
up it			1.						down	
/ _u = veh/h			Flow Speed, S _{FF}	60.0					V _D =	veh/h
-		Ramp Free-Flo		30.0						
Conversion to		<u>der Base (</u>	Conditions	1	1	-				
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	f _{HV}	f _p	v = V/PHF	= x f _{HV} x f _p
Freeway	3990	0.94	Level	4	0	0.9	980	1.00	4	4330
Ramp	500	0.94	Level	2	0	-	990	1.00	-	537
UpStream										
DownStream										
		Merge Areas				_	D	iverge Areas		
Estimation of	'v ₁₂				Estimat	ion o	f v ₁₂			
	V ₁₂ = V _F	(P _{FM})					V = V	/ _R + (V _F - V _R)P	
- _{EQ} =	(Equa	ation 13-6 or	13-7)		-			Equation 13-	5	2)
P _{FM} =	0.151	using Equat	on (Exhibit 13-6)		L _{EQ} = D -					
/ ₁₂ =	652 p		,		P _{FD} =			ising Equatio		5-7)
	•		on 13-14 or 13-		V ₁₂ =		•	oc/h		-
V_3 or V_{av34}	17)				V ₃ or V _{av34}	0.7		oc/h (Equation 1	13-14 or 13-1	17)
Is V_3 or $V_{av34} > 2,70$	0 pc/h? 🗌 Ye:	s 🗹 No				• ·		Yes No		
Is $V_3^{}$ or $V_{av34}^{}$ > 1.5 *	ʻV ₁₂ /2 🔽 Yes	s 🗌 No				• ·		Yes No	40.40.4	0.40
f Yes,V _{12a} =	1732 j	pc/h (Equatio	on 13-16, 13-		If Yes,V _{12a} =	=		oc/h (Equatio 8-19)	n 13-16, 1	3-18, or
Capacity Che	18, or	13-19)			Canaait	. Ch		, 10)		
Japacity Che	ir		anasity		Capacit	y Che		Ca	a a a it i	
	Actual		apacity	LOS F?	V		Actual		pacity	LOS F?
					V _F	<u> </u>		Exhibit 13-	_	
V _{FO}	4867	Exhibit 13-8		No	V _{FO} = V _F	- V _R		Exhibit 13-	_	
					V _R			Exhibit 13 10	-	
Flow Entering	n Merge In	fluence A	rea		Flow En	iterin	a Diver	ge Influen		
	Actual	Y	Desirable	Violation?		1	Actual	Max Des		Violation
17	2269	Exhibit 13-8	4600:All	No	V ₁₂			Exhibit 13-8		
V _{R12}	ice Detern	nination (i				f Serv	vice De	terminatio	n (if not	F)
V _{R12}								0086 V ₁₂ - 0		- /
Level of Serv		12	A A			c/mi/lr		12	D	
Level of Serv D _R = 5.475 +					PR (F		,			
D _R = 5.475 + D _R = 14.5 (pc/m	ii/ln)				100 - /r					
$D_{R} = 5.475 + 0_{R} = 14.5 \text{ (pc/m}$ OS = B (Exhibit)	ii/ln) 13-2)					Exhibit				
$D_{R} = 5.475 + D_{R} = 14.5 (pc/m)$ $OS = B (Exhibit)$	i/ln) 13-2) nination				Speed L	Deteri	ninatio	n		
$D_{R} = 5.475 + 0_{R} = 14.5 \text{ (pc/m}$ OS = B (Exhibit)	i/ln) 13-2) nination				Speed D D _s = (E	Deteri Exhibit 13	minatio 3-12)	n		
$\frac{\text{Level of Serv}}{D_{R} = 5.475 +}$ $D_{R} = 14.5 \text{ (pc/m)}$ $OS = B \text{ (Exhibit)}$ $\frac{\text{Speed Determ}}{M_{S}} = 0.278 \text{ (Exil)}$	i/ln) 13-2) nination				Speed L D _s = (E S _R = m	Deteri Exhibit 13 iph (Exh	minatio 3-12) ibit 13-12)	n		
Level of Serv $D_R = 5.475 +$ $D_R = 14.5$ (pc/m. .OS = B (Exhibit Speed Determ $M_S =$ 0.278 (Exil $S_R =$ 55.0 mph (i/ln) 13-2) nination bit 13-11)				Speed L D _s = (E S _R = m	Deteri Exhibit 13 iph (Exh	minatio 3-12)	n		

		RAMP	S AND RAM			ORKS	HEET				
General Int	formation		<u> </u>	Site Infor							
Analyst	MLS		F	reeway/Dir of Tr	avel	IR-90 /	Eastbound				
Agency or Comp	any LJB I	Inc.	J	unction		E 55th S	St				
Date Performed	2/27/	2015		urisdiction		ODOT I	District 12				
Analysis Time Pe		Peak Hour	A	nalysis Year		2034 Ex	kisting Con	dition			
-	on CUY-90-19.5/2	21.3									
Inputs		<u>l</u>									
Upstream A	dj Ramp	Freeway Num Ramp Numbe	ber of Lanes, N r of Lanes, N	4 1					Downstre Ramp	am Adj	
Yes	On	1 '	ane Length, L _A						Yes	On	
🗹 No	Off		ane Length L _D	1460					🗹 No	Off	
L _{up} =	ft	Freeway Volu Ramp Volume		3975 315					L _{down} =	ft	
			-Flow Speed, S _{FF}								
V _u =	veh/h		ow Speed, S _{FR}	45.0					V _D =	veh/h	
Conversio	n to pc/h Un										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{H∨}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	3975	0.94	Level	9	0		957	1.00	44	119	
Ramp	315	0.94	Level	5	0		976	1.00		43	
UpStream											
DownStream											
			Diverge Areas								
Estimation	of v ₁₂				Estimation of v ₁₂						
	V ₁₂ = V _F	(P _{FM})			$V_{12} = V_{R} + (V_{F} - V_{R})P_{FD}$						
- _{EQ} =	(Equa	ation 13-6 or	13-7)		L _{EQ} =		 (E	Equation 13-1	2 or 13-13	3)	
P _{FM} =		Equation (E			P _{FD} =			136 using Equ			
√ ₁₂ =	pc/h	1 (,		V ₁₂ =			20 pc/h			
√ ₃ or V _{av34}		Equation 13	-14 or 13-17)		V_3 or V_{av34}			49 pc/h (Equ	ation 12 1	4 or 12 17	
			-14 01 13-17)			> 2 7(alion 13-1	+0113-17)	
	2,700 pc/h? Ye							Yes Vo			
	1.5 * V ₁₂ /2 Ye		10 10 10			•••		Yes Vo	10 10 10	10 10	
f Yes,V _{12a} =	13-19)		-16, 13-18, or		lf Yes,V _{12a}	=	р 19	c/h (Equation	13-16, 13	-18, 01 13-	
Capacity C		/			Capacit	tv Che		/			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F?	
					V _F		4419	Exhibit 13-8		No	
V _{FO}		Exhibit 13-8			$V_{FO} = V_{FO}$		4076	Exhibit 13-8	_	No	
• FO					V _R		343	Exhibit 13-1	_	No	
Elow Entor	ing Merge In	fluonoo	<u></u>					ge Influen			
riow Enter	Actual		Desirable	Violation?	FIOW EI	-	ctual	Max Desirab		Violation?	
V _{R12}	Actual	Exhibit 13-8	Desilable	VIOIALIOITE	V ₁₂		120	Exhibit 13-8	4400:All	No	
			if not E)		-						
Level of Se D _R = 5.475 +					terminatio 0086 V ₁₂ - 0.0		r)				
					0000 v ₁₂ - 0.1	UUU LD					
D _R = (pc/m						.3 (pc/n					
OS = (Exhibit 13-2)						•	oit 13-2)				
Speed Determination					Speed I						
M _S = (Exib	it 13-11)				ľ	•	khibit 13-	,			
S _R = mph (I	Exhibit 13-11)					-	(Exhibit	-			
	Exhibit 13-11)				S ₀ = 6	5.2 mph	(Exhibit	13-12)			
					S = 5	9.4 mph	(Exhibit	13-13)			
<pre>s = mph (Exhibit 13-13) pyright © 2014 University of Florida, All Rights Reserved</pre>					HCS2010 [™]				orotod: 11/1)/2015 3:40 P	

		RAMP				RKS	HEET				
General Inf	ormation		• /	Site Infor							
Analyst	MLS		F	reeway/Dir of Tr		IR-90 /	Eastbound				
Agency or Compa	any LJBI	nc.	J	lunction		E 55th	St				
Date Performed	2/27/	2015	J	lurisdiction		ODOT	District 12				
Analysis Time Pe		Peak Hour	Α	Analysis Year		2034 E	xisting Con	dition			
	n CUY-90-19.5/2	21.3									
Inputs		L									
Upstream Ac	lj Ramp	Freeway Num Ramp Numbe	ber of Lanes, N	4					Downstre Ramp	am Adj	
Yes	On	· ·	_ane Length, L _A						Yes	On	
V No	Off		Lane Length L _D	1460					🗹 No	Off	
L _{up} =	ft	Freeway Volu Ramp Volume		5480 210					L _{down} =	ft	
			-Flow Speed, S _{FF}								
V _u =	veh/h		low Speed, S _{FR}	45.0					V _D =	veh/h	
Conversior	to pc/h Und										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	Τ	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	5480	0.94	Level	8	0	0	962	1.00	60		
Ramp	210	5	0		976	1.00		29			
UpStream		0.94	Level								
DownStream											
		Merge Areas		Diverge Areas Estimation of v ₁₂							
Estimation	of v ₁₂				Estimat	tion o	f v ₁₂				
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F - V _F	P _{ED}		
L _{EQ} =	.= .	tion 13-6 or	13-7)		L _{EQ} =			Equation 13-1		3)	
P _{FM} =		Equation (I	-		P _{FD} =			436 using Equ		-	
V ₁₂ =	pc/h	(V ₁₂ =			73 pc/h			
° 12 V ₃ or V _{av34}		Equation 12	14 or 12 17		V ₃ or V _{av34}			-	otion 12 1	1 or 12 17)	
			-14 or 13-17)			> 0 7		45 pc/h (Equ	alion 13-1	4 01 13-17)	
	,700 pc/h? Ye							Yes 🗹 No			
	.5 * V ₁₂ /2 Yes		10 10 10					Yes Vo	10 10 10	10 10	
lf Yes,V _{12a} =	pc/n (13-19)		-16, 13-18, or		If Yes,V _{12a} :	=	р 19	c/h (Equation	13-16, 13	-18, 01 13-	
Capacity C		,			Capacit	tv Ch		- /			
	Actual		Capacity	LOS F?			Actual	Ca	pacity	LOS F?	
					V _F		6063	Exhibit 13-8		No	
V _{FO}		Exhibit 13-8			$V_{FO} = V_{FO}$		5834	Exhibit 13-8	_	No	
. FO					V _R		229	Exhibit 13-1	_	No	
		fluonoo					-			NU	
Flow Enter	ing Merge In		Desirable	Violation?	FIOW EI	_	-	rge Influen Max Desirat		Violation?	
V	Actual	Exhibit 13-8	Desirable	Violation?	V		Actual	Exhibit 13-8	4400:All	Violation?	
V _{R12}			······		V ₁₂		2773			No	
Level of Se		-			terminatio		F)				
D _R = 5.475 +					.0086 V ₁₂ - 0.	009 L _D					
D _R = (pc/mi	-					5.0 (pc/	,				
LOS = (Exhib	oit 13-2)				LOS = B	(Exhib	oit 13-2)				
Speed Dete	rmination				Speed I	Deter	minatio	n			
M _s = (Exibit 13-11)					D _s = 0.319 (Exhibit 13-12)						
S _R = mph (Exhibit 13-11)					S _R = 5	4.3 mph	(Exhibit	13-12)			
S_0 = mph (Exhibit 13-11)							(Exhibit				
	Exhibit 13-13)					-	(Exhibit	-			
Copyright © 2014 University of Florida, All Rights Reserved						Version		Gen			

		RAMP				ORKS	HEET				
General Info	rmation		• /	Site Infor							
Analyst	MLS		F	Freeway/Dir of Tr	avel	IR-90 /	Eastbound				
Agency or Compan	y LJB I	nc.		Junction		E 72nd	St				
Date Performed	2/27/	2015		Jurisdiction		ODOT	District 12				
Analysis Time Peric		Peak Hour		Analysis Year		2034 E	xisting Cor	dition			
Project Description	CUY-90-19.5/2	21.3									
Inputs											
Upstream Adj	Ramp	Freeway Num Ramp Numbe	ber of Lanes, N or of Lanes, N	4 1					Downstre Ramp	am Adj	
Yes	On		ane Length, L _A						Yes	On	
✓ No	Off	Deceleration I Freeway Volu	Lane Length L _D	645 4030					🗹 No	Off	
L _{up} =	ft	Ramp Volume		4030 70					L _{down} =	ft	
<u> М</u> –		Freeway Free	-Flow Speed, S _{FF}	= 60.0					V _D =	veh/h	
V _u =	veh/h	Ramp Free-Fl	ow Speed, S _{FR}	30.0					vD−	VEII/II	
Conversion											
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	Τ	f _{HV}	f _p	v = V/PHF	^F x f _{HV} x f _p	
Freeway	4030	0.94	Level	4	0	0.9	980	1.00	4	373	
Ramp	70	5	0		976	1.00		76			
UpStream											
DownStream											
				Diverge Areas Estimation of v ₁₂							
Estimation o	of v ₁₂				Estimat	tion o	f v ₁₂				
	V ₁₂ = V _F	(P _{FM})					V ₁₂ =	V _R + (V _F - V _F	P _{FD}		
L _{EQ} =	.= .	tion 13-6 or	13-7)		L _{EQ} =		(Equation 13-1	2 or 13-13	3)	
P _{FM} =		Equation (E			P _{FD} =			136 using Equ		-	
V ₁₂ =	pc/h				V ₁₂ =			49 pc/h			
*12 V ₃ or V _{av34}		Equation 12	14 or 12 17		V ₃ or V _{av34}			•	otion 12 1	1 or 10 17)	
			-14 or 13-17)			> 0 7		12 pc/h (Equ	allon 13-1	4 01 13-17)	
Is V_3 or $V_{av34} > 2,7$								Yes Vo			
Is V_3 or $V_{av34} > 1.5$			10 10 10					Yes Vo	10 10 10	10 10	
If Yes,V _{12a} =	pc/n (13-19)		-16, 13-18, or		If Yes,V _{12a}	=	p 19	c/h (Equation	13-16, 13	-18, or 13-	
Capacity Ch		,			Capacit	tv Che		,			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F?	
					V _F		4373	Exhibit 13-8		No	
V _{FO}		Exhibit 13-8			V _{FO} = V _F		4297	Exhibit 13-8	_	No	
* FO									-		
					V _R		76	Exhibit 13-1		No	
Flow Enterin					Flow Er	_	-	ge Influen			
	Actual	Max Exhibit 13-8	Desirable	Violation?			Actual	Max Desirab	(Violation?	
V _{R12}		V ₁₂		949	Exhibit 13-8	4400:All	No				
Level of Ser					terminatio		<u>F)</u>				
$D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$						D _R = 4	.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/l	n)				D _R = 1	5.2 (pc/	/mi/ln)				
LOS = (Exhibit	: 13-2)				LOS = B	(Exhib	oit 13-2)				
Speed Deter								n			
M _S = (Exibit 13-11)					Speed DeterminationDs =0.500 (Exhibit 13-12)						
					S _R = 51.0 mph (Exhibit 13-12)						
S _R = mph (Exhibit 13-11)								-			
S ₀ = mph (Exhibit 13-11) S = mph (Exhibit 13-13)							(Exhibit	-			
							(Exhibit	-			
oyright © 2014 University of Florida, All Rights Reserved					HCS2010 [™]	Version	6.60	Gen	erated: 6/22/	2015 11:42 Al	

		RAMP				ORKS	HEET				
General Info	ormation		<u></u>	Site Infor							
Analyst	MLS		F	reeway/Dir of Tr		IR-90 /	Eastbound				
Agency or Compar	ny LJBI	nc.	J	unction		E 72nd	St				
Date Performed	2/27/	2015	J	urisdiction		ODOT	District 12				
Analysis Time Peri		Peak Hour	A	nalysis Year		2034 E	xisting Con	dition			
Project Description	0 CUY-90-19.5/2	21.3									
Inputs											
Upstream Adj	Ramp	Freeway Num Ramp Numbe	ber of Lanes, N	4					Downstrea Ramp	am Adj	
□Yes	On	· ·	_ane Length, L _A						Yes	On	
🗹 No	Off		Lane Length L _D	645 6030					✓ No	Off	
L _{up} =	ft	Freeway Volu Ramp Volume		6030 100					L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	60.0					V -	a la /la	
V _u =	veh/h		low Speed, S _{FR}	30.0					V _D =	veh/h	
Conversion	onversion to pc/h Under Base Conditions										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	Τ	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	`	0.94	level	4	0	0	980	1.00	65	543	
Ramp	reeway 6030 0.94 Level amp 100 0.94 Level						985	1.00		08	
UpStream	100	0.01	20101	3	0			1.00			
DownStream											
		Merge Areas		-				iverge Areas			
Estimation o	of v ₁₂				Estimat	tion o	f v ₁₂				
	V ₁₂ = V _F	(P _{EM})						V _R + (V _F - V _R)P _{ED}		
=		tion 13-6 or	13-7)		I =			Equation 13-1	5)	
L _{EQ} = P =		Equation (I	-		L _{EQ} = P =			-			
P _{FM} =	-				P _{FD} =			136 using Equ		bit 13-7)	
$V_{12} =$	pc/h	F	44 40 47		$V_{12} =$			14 pc/h			
V ₃ or V _{av34}			-14 or 13-17)		$V_3 \text{ or } V_{av34}$			14 pc/h (Equa	ation 13-1	4 or 13-17)	
Is V_3 or $V_{av34} > 2,$								Yes 🗹 No			
Is V_3 or V_{av34} > 1.					Is V ₃ or V _{av}	_{/34} > 1.5		Yes 🗹 No			
lf Yes,V _{12a} =	pc/h (13-19)		-16, 13-18, or		If Yes,V _{12a}	=	p 19	c/h (Equation	13-16, 13	-18, or 13-	
Capacity Ch					Capacit)			
	Actual		Capacity	LOS F?		<u>y on</u>	Actual	Car	pacity	LOS F?	
-	/ lotudi		Jupuolity	20011	V _F		6543	Exhibit 13-8		No	
V		E							-	_	
V _{FO}		Exhibit 13-8			V _{FO} = V _F		6435	Exhibit 13-8	-	No	
					V _R		108	Exhibit 13-10		No	
Flow Enterii		1		-	Flow Er	_		ge Influend			
	Actual	· · · · ·	Desirable	Violation?		/	Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 13-8			V ₁₂	2	914	Exhibit 13-8	4400:All	No	
Level of Service Determination (if not F)					Level o	f Serv	vice De	terminatior	n (if not	F)	
D _R = 5.475 + 0.00734 v _R + 0.0078 V ₁₂ - 0.00627 L _A						D _R = 4	.252 + 0.	0086 V ₁₂ - 0.0	009 L _D		
D _R = (pc/mi/		.=			D _R = 2	3.5 (pc/	mi/ln)	.=	-		
LOS = (Exhibi	-										
Speed Deter	-				- ()						
					Speed DeterminationDs =0.503 (Exhibit 13-12)						
M _S = (Exibit					L V	•					
S _R = mph (Exhibit 13-11)							(Exhibit	-			
•	xhibit 13-11)					-	(Exhibit	-			
S = mph (Ex	xhibit 13-13)				S = 5	6.8 mph	(Exhibit	13-13)			
Copyright © 2014 University of Florida, All Rights Reserved					S = 56.8 mph (Exhibit 13-13) HCS2010 [™] Version 6.60 Generated: 6/22/2015						

		RAMP				ORKS	HEET				
General Info	ormation	10 111		Site Infor							
Analyst	MLS		F	reeway/Dir of Tr	avel	IR-90 /	Westbound				
Agency or Compar	ny LJBI	nc.	J	unction		Martin I	_uther King	Jr Dr			
Date Performed	2/27/	2015	J	urisdiction			District 12				
Analysis Time Per		Peak Hour	Α	nalysis Year		2034 E	xisting Con	dition			
Project Descriptior	n CUY-90-19.5/2	21.3									
Inputs											
Upstream Adj	Ramp	Freeway Num Ramp Numbe	ber of Lanes, N	4					Downstrea Ramp	am Adj	
□Yes	On	· ·	_ane Length, L _A						Yes	On	
🗹 No	Off		Lane Length L _D	670 7140					✓ No	Off	
L _{up} =	ft	Freeway Volu Ramp Volume		1200					L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	60.0					V -	veh/h	
V _u =	veh/h	Ramp Free-Fl	low Speed, S _{FR}	25.0					V _D =	ven/n	
Conversion	Conversion to pc/h Under Base Conditions										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	7140	0.94	Level	4	0	0.9	980	1.00	77	'48	
Ramp	1200	3	0		985	1.00		296			
UpStream		0.94	Level		-						
DownStream											
		Merge Areas			Diverge Areas						
Estimation (of v ₁₂				Estimat	tion o	f v ₁₂				
	V ₁₂ = V _F	(P _{EM})						V _R + (V _F - V _R)P _{ED}		
=	.= .	tion 13-6 or	13-7)		I =			Equation 13-1	5)	
L _{EQ} = P =		Equation (I	-		L _{EQ} = P -			-			
P _{FM} =	-		Exhibit 13-0)		P _{FD} =			136 using Equ	ation (Exil	DIL 13-7)	
V ₁₂ =	pc/h				V ₁₂ =			09 pc/h			
V ₃ or V _{av34}			-14 or 13-17)		$V_3^{}$ or $V_{av34}^{}$			19 pc/h (Equa	ation 13-1	4 or 13-17)	
Is $V_3 \text{ or } V_{av34} > 2$,								Yes 🗹 No			
Is V_3 or $V_{av34} > 1$.					Is V ₃ or V _{av}	_{/34} > 1.5		Yes 🗹 No			
lf Yes,V _{12a} =		•	-16, 13-18, or		If Yes,V _{12a} :	=		c/h (Equation	13-16, 13	-18, or 13-	
Capacity Ch	13-19)				Capacit		19	")			
			`anaoity	LOS F?		iy ch	Actual		pacity	LOS F?	
	Actual		Capacity	LUGF?	V _F		7748	Exhibit 13-8			
.,					-				-	No	
V _{FO}		Exhibit 13-8			$V_{FO} = V_{FO}$	-	6452	Exhibit 13-8	-	No	
					V _R		1296	Exhibit 13-10	0 1900	No	
Flow Enteri	ng Merge In	fluence A	lrea		Flow Er	nterin	g Diver	ge Influen	ce Area		
	Actual	Max	Desirable	Violation?		ŀ	Actual	Max Desirab	le	Violation?	
V _{R12}		Exhibit 13-8			V ₁₂	4	109	Exhibit 13-8	4400:All	No	
Level of Ser	vice Detern	nination (if not F)	e .	Level of	f Serv	vice De	termination	n (if not	. F)	
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$						D _R = 4	.252 + 0.	0086 V ₁₂ - 0.0	009 L _D		
D _R = (pc/mi/			3.6 (pc/		12	D					
LOS = (Exhibi	-										
	-				LOS = D (Exhibit 13-2) Speed Determination						
Speed Determination											
M _S = (Exibit 13-11)					$D_s = 0.675$ (Exhibit 13-12)						
S _R = mph (Exhibit 13-11)							(Exhibit	-			
S ₀ = mph (Exhibit 13-11)					S ₀ = 6	2.6 mph	(Exhibit	13-12)			
	xhibit 13-13)				S = 5	3.8 mph	(Exhibit	13-13)			
Copyright © 2014 University of Florida, All Rights Reserved					HCS2010 [™]	Version	6 60	Gen	erated: 11/19	/2015 3:45 PM	

		RAMP				RKS	HEET			
General Info	ormation		<u>• /</u>	Site Infor						
Analyst	MLS		F	reeway/Dir of Tr	avel	IR-90 /	Westbound			
Agency or Compar	ny LJBI	nc.	J	unction		Martin I	_uther King	Jr Dr		
Date Performed	2/27/	2015	J	urisdiction			District 12			
Analysis Time Peri		Peak Hour	A	nalysis Year		2034 E	xisting Con	dition		
Project Description	0 CUY-90-19.5/2	21.3								
Inputs		ı								
Upstream Adj	Ramp	Freeway Num Ramp Numbe	ber of Lanes, N	4					Downstrea Ramp	am Adj
□Yes	On	· ·	_ane Length, L _A						Yes	On
🗹 No	Off		Lane Length L _D	670 4620					✓ No	Off
L _{up} =	ft	Freeway Volu Ramp Volume		4630 520					L _{down} =	ft
		Freeway Free	-Flow Speed, S _{FF}	60.0					V -	a la /la
V _u =	veh/h		low Speed, S _{FR}	25.0					V _D =	veh/h
Conversion	onversion to pc/h Under Base Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	Τ	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	`	0.94	l evel	4	0	0	980	1.00	50	
Ramp							985	1.00		61
UpStream	020	0.01	20101	3	0					
DownStream										
		Merge Areas		-						
Estimation of	of v ₁₂				Estimat	tion o	f v ₁₂			
	V ₁₂ = V _F	(P=++)						V _R + (V _F - V _R	Per	
l =		tion 13-6 or	13_7)		=			Equation 13-1)
L _{EQ} = D -			-		L _{EQ} =			-		
P _{FM} =	-	Equation (I	Exhibit 13-0)		P _{FD} =			136 using Equ	lation (Exh	DIT 13-7)
V ₁₂ =	pc/h				V ₁₂ =			07 pc/h		
V ₃ or V _{av34}			-14 or 13-17)		V_3 or V_{av34}			58 pc/h (Equa	ation 13-14	4 or 13-17)
Is V_3 or $V_{av34} > 2$,								Yes 🗹 No		
Is V_3 or V_{av34} > 1.					Is V_3 or V_{av}	_{/34} > 1.5		Yes 🗹 No		
lf Yes,V _{12a} =	13-19)		-16, 13-18, or		If Yes,V _{12a} :		19	c/h (Equation 9)	13-16, 13	-18, or 13-
Capacity Ch	iecks				Capacit	ty Che	ecks			
	Actual	0	apacity	LOS F?			Actual	Ca	pacity	LOS F?
					V _F		5024	Exhibit 13-8	9200	No
V _{FO}		Exhibit 13-8			$V_{FO} = V_{FO}$	V _R	4463	Exhibit 13-8	9200	No
					V _R		561	Exhibit 13-10	0 1900	No
Elow Entoriu	na Maraa In	fluonoo						ge Influen		110
Flow Enteri	Actual		Desirable	Violation?	FIOW EI	_	Actual	Max Desirab		Violation?
V	Actual	Exhibit 13-8	Desilable	VIOIALIOIT	V ₁₂		2507	Exhibit 13-8	4400:All	No
V _{R12}										
Level of Ser					termination		F)			
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$								0086 V ₁₂ - 0.0	009 L _D	
D _R = (pc/mi/	-					9.8 (pc/				
LOS = (Exhibi	t 13-2)				LOS = B	(Exhib	oit 13-2)			
Speed Dete	rmination				Speed I	Deter	minatio	n		
M _S = (Exibit 13-11)					D _s = 0.608 (Exhibit 13-12) S _R = 49.0 mph (Exhibit 13-12)					
S _R = mph (Exhibit 13-11)										
	xhibit 13-11)				S ₀ = 6	4.8 mph	(Exhibit	13-12)		
	xhibit 13-13)				S = 5	5.9 mph	(Exhibit	13-13)		
Copyright © 2014 University of Florida, All Rights Reserved					HCS2010 [™]	Version	6 60	Gen	erated: 6/22/	2015 11:44 AN

		RAMP				ORKS	HEET			
General Info	ormation	10 111	<u></u>	Site Infor						
Analyst	MLS		F	reeway/Dir of Tr		IR-90 /	Westbound			
Agency or Compar	ny LJB I	nc.	J	unction		E 55th	St			
Date Performed	2/27/	2015	J	urisdiction		ODOT	District 12			
Analysis Time Per		Peak Hour	A	nalysis Year		2034 E	xisting Con	dition		
Project Descriptior	n CUY-90-19.5/2	21.3								
Inputs		i						i		
Upstream Adj	Ramp	Freeway Num Ramp Numbe	ber of Lanes, N	4 1					Downstrea Ramp	am Adj
□Yes	On	· ·	_ane Length, L _A						Yes	On
🗹 No	Off		Lane Length L _D	575 6350					✓ No	Off
L _{up} =	ft	Freeway Volu Ramp Volume		6350 740					L _{down} =	ft
		Freeway Free	-Flow Speed, S _{FF}	60.0					V -	a la /la
V _u =	veh/h		low Speed, S _{FR}	25.0					V _D =	veh/h
Conversion	onversion to pc/h Under Base Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	Τ	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	`´	0.94	level	4	0	0	980	1.00	66	
Ramp							985	1.00		99
UpStream		0.01	20101	3	0			1.00		
DownStream										
		Merge Areas		2	Diverge Areas					
Estimation (of v ₁₂				Estimat	tion o	f v ₁₂			
	V ₁₂ = V _F	(P=u)						V _R + (V _F - V _R	Per	
	.= .	tion 13-6 or	13 7)		=			Equation 13-1)
L _{EQ} = D -			-		L _{EQ} =			-		
P _{FM} =	-	Equation (I	Exhibit 13-0)		P _{FD} =			l36 using Equ	lation (Exh	DIT 13-7)
V ₁₂ =	pc/h				V ₁₂ =			55 pc/h		
V ₃ or V _{av34}			-14 or 13-17)		$V_3^{}$ or $V_{av34}^{}$			17 pc/h (Equa	ation 13-14	4 or 13-17)
Is V_3 or $V_{av34} > 2$,								Yes 🗹 No		
Is V_3 or V_{av34} > 1.					Is V_3 or V_{av}	_{/34} > 1.5		Yes 🗹 No		
lf Yes,V _{12a} =	13-19)	•	-16, 13-18, or		lf Yes,V _{12a}		19	c/h (Equation 9)	13-16, 13	-18, or 13-
Capacity Ch	necks				Capacit	ty Che	ecks			
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F?
					V _F		6890	Exhibit 13-8	9200	No
V _{FO}		Exhibit 13-8			$V_{FO} = V_{FO}$	- V _P	6091	Exhibit 13-8	9200	No
10					V _R	-	799	Exhibit 13-10	0 1900	No
Elow Entoriu	ng Marga In	fluonoo						ge Influend		110
Flow Enteri	Actual	1	Desirable	Violation?	FIOWEI	_	Actual	Max Desirab		Violation?
V	Actual	Exhibit 13-8	Desilable	VIOIALIOIT	V		455	Exhibit 13-8	4400:All	No
V _{R12}		V ₁₂								
Level of Ser					termination		F)			
$D_{R} = 5.475 + 0.00734 v_{R} + 0.0078 V_{12} - 0.00627 L_{A}$								0086 V ₁₂ - 0.0	009 L _D	
D _R = (pc/mi/	-					8.8 (pc/	,			
LOS = (Exhibi	it 13-2)				LOS = D) (Exhit	oit 13-2)			
Speed Dete	rmination				Speed I	Deter	minatio	n		
-	13-11)				D _s = 0.630 (Exhibit 13-12) S _R = 48.7 mph (Exhibit 13-12)					
S _R = mph (Exhibit 13-11)										
	xhibit 13-11)				S ₀ = 6	3.0 mph	(Exhibit	13-12)		
	xhibit 13-13)				S = 5	4.9 mph	(Exhibit	13-13)		
Copyright © 2014 University of Florida, All Rights Reserved					HCS2010 [™]	Version	6 60	Gen	erated: 6/22/	2015 11:43 AN

		RAMP				ORKS	HEET				
General Info	ormation		<u> </u>	Site Infor							
Analyst	MLS		F	reeway/Dir of Tr	avel	IR-90 /	Westbound	1			
Agency or Compa	ny LJB I	Inc.	J	unction		E 55th	St				
Date Performed	2/27/	2015		urisdiction		ODOT	District 12				
Analysis Time Per		Peak Hour	Α	nalysis Year		2034 E	kisting Con	dition			
Project Description	n CUY-90-19.5/2	21.3									
Inputs											
Upstream Ad	j Ramp	Freeway Num Ramp Numbe	ber of Lanes, N r of Lanes, N	4 1					Downstre Ramp	am Adj	
Yes	On	I '	ane Length, L _A						Yes	On	
✓ No	Off		ane Length L _D	575					🗹 No	Off	
L _{up} =	ft	Freeway Volu Ramp Volume		4630 760					L _{down} =	ft	
			-Flow Speed, S _{FF}	60.0					.,		
V _u =	veh/h		ow Speed, S _{FR}	25.0					V _D =	veh/h	
Conversion	to pc/h Un										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	4630	0.94	Level	4	0		980	1.00	50)24	
Ramp	760	8	0		962	1.00	-	41			
UpStream	100	Level		, °		, UL	1.00				
DownStream											
							iverge Areas				
Estimation	of v ₁₂				Estimat	tion o	f v ₁₂				
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F - V _F)P _{ED}		
L _{EQ} =		ation 13-6 or	13-7)		L _{EQ} =			Equation 13-1		3)	
P _{FM} =		Equation (E	-		P _{FD} =			136 using Equ			
V ₁₂ =	pc/h				V ₁₂ =			65 pc/h			
	•	Equation 12	14 or 12 17					•	ation 12 1	1 or 12 17)	
V_3 or V_{av34}			-14 or 13-17)		V_3 or V_{av34}	. 0.7		79 pc/h (Equ	ation 13-1	4 OF 13-17)	
Is V_3 or $V_{av34} > 2$,								Yes 🗹 No			
Is V_3 or $V_{av34} > 1$.			10 10 10					Yes 🗹 No	10 10 10	40 40	
lf Yes,V _{12a} =	pc/h (13-19)		-16, 13-18, or		If Yes,V _{12a}	=	p 19	c/h (Equation	13-16, 13	-18, or 13-	
Capacity Cl		/			Capacit	v Che		·)			
	Actual	C	apacity	LOS F?		<u> </u>	Actual	Ca	pacity	LOS F?	
					V _F		5024	Exhibit 13-8		No	
V _{FO}		Exhibit 13-8			$V_{FO} = V_{FO}$		4183	Exhibit 13-8	_	No	
- FO					V _R		841	Exhibit 13-1	_	No	
Flaur Fratari		<u> </u>								NO	
Flow Entern	ng Merge In		Desirable	Violation?	FIOW EI			ge Influen Max Desirab		Violation?	
V	Actual		Desirable	Violation?	V		Actual	Exhibit 13-8	4400:All	Violation?	
V _{R12} Exhibit 13-8					V ₁₂		665			No	
Level of Service Determination (if not F)								terminatio		F)	
$D_R = 5.475 + 0.00734 v_R + 0.0078 V_{12} - 0.00627 L_A$								0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/	/ln)				D _R = 2	2.0 (pc/	mi/ln)				
LOS = (Exhib	it 13-2)				LOS = C	(Exhib	oit 13-2)				
Speed Dete	rmination				Speed Determination						
M _s = (Exibit 13-11)					D _s = 0.634 (Exhibit 13-12)						
S _R = mph (Exhibit 13-11)					S _R = 4	8.6 mph	(Exhibit	13-12)			
S_0 = mph (Exhibit 13-11)					S ₀ = 6	5.1 mph	(Exhibit	13-12)			
	xhibit 13-13)				S = 5	5.2 mph	(Exhibit	13-13)			
Copyright © 2014 University of Florida, All Rights Reserved					HCS2010 [™]				erated: 6/22	2015 11:43 AI	

		RAMP				ORKS	HEET				
General Info	ormation		• /	Site Infor							
Analyst	MLS		F	reeway/Dir of Tr	avel	IR-90 /	Eastbound				
Agency or Compar	ny LJB I	nc.	J	unction		Martin I	_uther King	Jr Dr			
Date Performed	6/19/	2015	J	urisdiction			District 12				
Analysis Time Per		Peak Hour	A	nalysis Year		2034 B	uild Conditi	on			
Project Descriptior	n CUY-90-19.5/2	21.3									
Inputs											
Upstream Adj	Ramp	Freeway Num Ramp Numbe	nber of Lanes, N er of Lanes, N	4 1					Downstrea Ramp	am Adj	
□Yes	On	· ·	Lane Length, L _A						Yes	On	
🗹 No	Off	Deceleration Freeway Volu	Lane Length L _D	800					✓ No	Off	
L _{up} =	ft	Ramp Volume	1	3960 625					L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	60.0					V -	a la /la	
V _u =	veh/h		low Speed, S _{FR}	45.0					V _D =	veh/h	
Conversion	Conversion to pc/h Under Base Conditions										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	Τ	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway		0.94	l evel	9	0	0	957	1.00	44		
Ramp							976	1.00		82	
UpStream	020	20101	5	0							
DownStream											
		Merge Areas									
Estimation (of v ₁₂				Estimat	tion o	f v ₁₂				
	V ₁₂ = V _F	(P _{EM})			$V_{12} = V_R + (V_F - V_R)P_{FD}$						
=	.= .	tion 13-6 or	13-7)		I =			Equation 13-1	5)	
L _{EQ} = P =		Equation (I	-		L _{EQ} = P =			-			
P _{FM} =	-				P _{FD} =			136 using Equ		bit 13-7)	
$V_{12} =$	pc/h	F			$V_{12} =$			04 pc/h			
V ₃ or V _{av34}			-14 or 13-17)		V ₃ or V _{av34}			49 pc/h (Equa	ation 13-1	4 or 13-17)	
Is V_3 or $V_{av34} > 2$,								Yes 🗹 No			
Is V_3 or V_{av34} > 1.					Is V ₃ or V _{av}	_{/34} > 1.5		Yes 🗹 No			
lf Yes,V _{12a} =	pc/h (13-19)		-16, 13-18, or		lf Yes,V _{12a}	=	p 19	c/h (Equation	13-16, 13	-18, or 13-	
Capacity Ch	/				Capacit			,)			
	Actual		Capacity	LOS F?		<u>y on</u>	Actual	Ca	pacity	LOS F?	
-	/ lotuur		Japaony	20011	V _F		4402	Exhibit 13-8		No	
V		E			-				-	_	
V _{FO}		Exhibit 13-8			V _{FO} = V _F		3720	Exhibit 13-8	-	No	
					V _R		682	Exhibit 13-10		No	
Flow Enteri		1			Flow Er	_		ge Influen			
	Actual	· · · · ·	Desirable	Violation?			Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 13-8			V ₁₂	2	304	Exhibit 13-8	4400:All	No	
Level of Service Determination (if not F)								termination		F)	
D _R = 5.475 + 0.00734 v _R + 0.0078 V ₁₂ - 0.00627 L _A						D _R = 4	.252 + 0.	0086 V ₁₂ - 0.0	009 L _D		
D _R = (pc/mi/	'ln)				D _R = 1	6.9 (pc/	mi/ln)				
LOS = (Exhibi	it 13-2)					: Exhit	oit 13-2)				
Speed Dete	-						,	n			
-					D _s = 0.359 (Exhibit 13-12)						
-						•		•			
S _R = mph (Exhibit 13-11)							(Exhibit	-			
•	xhibit 13-11)				1.	-	(Exhibit	-			
S = mph (E:	xhibit 13-13)				1			13-13)			
Copyright © 2014 University of Florida, All Rights Reserved					S = 58.7 mph (Exhibit 13-13) HCS2010 [™] Version 6.60 Generated: 6/22/2015						

		RAMP				ORKS	HEET				
General Info	ormation		• /	Site Infor							
Analyst	MLS		F	reeway/Dir of Tr	avel	IR-90 /	Eastbound				
Agency or Compar	ny LJBI	nc.	J	unction		Martin I	Luther King	Jr Dr			
Date Performed	6/19/	2015	J	urisdiction			District 12				
Analysis Time Peri		Peak Hour	A	nalysis Year		2034 B	uild Conditi	on			
Project Description	n CUY-90-19.5/2	21.3									
Inputs								i			
Upstream Adj	Ramp	Freeway Num Ramp Numbe	nber of Lanes, N er of Lanes, N	4 1					Downstrea Ramp	am Adj	
□Yes	On		Lane Length, L _A						Yes	On	
🗹 No	Off		Lane Length L _D	800 5030					✓ No	Off	
L _{up} =	ft	Freeway Volu Ramp Volume	1	5930 545					L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	60.0					V -	a la /la	
V _u =	veh/h		low Speed, S _{FR}	45.0					V _D =	veh/h	
Conversion	onversion to pc/h Under Base Conditions										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	Τ	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	`´	0.94	l evel	8	0	0	962	1.00	65	61	
Ramp							976	1.00		94	
UpStream	010	0.01	20101	5	0		010	1.00			
DownStream											
		Merge Areas						iverge Areas			
Estimation of	of v ₁₂				Estimat	tion o	f v ₁₂				
	V ₁₂ = V _F	(P _{EM})						V _R + (V _F - V _R)P _{ED}		
L _{EQ} =	.= .	tion 13-6 or	13-7)		=			Equation 13-1)	
		Equation (I	-		L _{EQ} = P =		-	-			
P _{FM} =	-				P _{FD} =			136 using Equ		bit 13-7)	
$V_{12} =$	pc/h	F 40			$V_{12} =$			96 pc/h			
V ₃ or V _{av34}			-14 or 13-17)		$V_3 \text{ or } V_{av34}$			82 pc/h (Equa	ation 13-14	4 or 13-17)	
Is V_3 or $V_{av34} > 2$,								Yes 🗹 No			
Is V ₃ or V _{av34} > 1.					Is V ₃ or V _a	_{/34} > 1.5		Yes 🗹 No			
lf Yes,V _{12a} =	pc/h (13-19)		-16, 13-18, or		lf Yes,V _{12a}	=	ր 1Չ	c/h (Equation	13-16, 13	-18, or 13-	
Capacity Ch	/				Capacit			·)			
	Actual		Capacity	LOS F?		iy on	Actual	Car	pacity	LOS F?	
-	/ lotuur		Japaony	20011	V _F		6561	Exhibit 13-8	1	No	
V		E							-	_	
V _{FO}		Exhibit 13-8			V _{FO} = V		5967	Exhibit 13-8	-	No	
					V _R		594	Exhibit 13-10		No	
Flow Enteri					Flow E	_	-	ge Influend			
	Actual	i	Desirable	Violation?			Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 13-8			V ₁₂	3	3196	Exhibit 13-8	4400:All	No	
Level of Service Determination (if not F)								terminatior		F)	
D _R = 5.475 + 0.00734 v _R + 0.0078 V ₁₂ - 0.00627 L _A						D _R = 4	.252 + 0.	0086 V ₁₂ - 0.0	009 L _D		
D _R = (pc/mi/	'ln)				D _R = 2	4.5 (pc/	/mi/ln)				
LOS = (Exhibi	it 13-2)					C (Exhit	oit 13-2)				
Speed Determination							,	n			
-					D _s = 0.351 (Exhibit 13-12)						
-						•		,			
S _R = mph (Exhibit 13-11)						-	(Exhibit	-			
•	xhibit 13-11)				1 ·	-	(Exhibit	-			
S = mph (E:	xhibit 13-13)							13-13)			
Copyright © 2014 University of Florida, All Rights Reserved					S = 58.2 mph (Exhibit 13-13) HCS2010 TM Version 6.60 Generated: 6/22/2015 11:33						

		RAMP				RKS	HEET				
General Info	ormation			Site Infor							
Analyst	MLS		F	Freeway/Dir of Tr		IR-90 /	Westbound	1			
Agency or Compar				lunction			uther King				
Date Performed	6/19/		J	lurisdiction			District 12				
Analysis Time Peri		Peak Hour	A	Analysis Year		2034 B	uild Conditi	on			
Project Descriptior	CUY-90-19.5/2	21.3									
Inputs											
Upstream Adj	Ramp	Freeway Num Ramp Numbe	ber of Lanes, N	4					Downstrea Ramp	am Adj	
□Yes	On	· ·	ane Length, L _A	I					Yes	On	
✓ No	Off		Lane Length L _D	670					✓ No	Off	
L _{up} =	ft	Freeway Volu Ramp Volume		7140 1330					L _{down} =	ft	
up			e-Flow Speed, S _{FF}								
V _u =	veh/h		low Speed, S _{FF}	25.0					V _D =	veh/h	
Conversion	Conversion to pc/h Under Base Conditions										
						_					
(pc/h)	(Veh/hr)	PHF 0.94	Terrain	%Truck	%Rv		f _{HV}	I.	v = V/PHF	I.	
Freeway	7140	4	0		980	1.00		748			
Ramp	1330	0.94	Level	3	0	0.9	985	1.00	14	136	
UpStream DownStream						_					
DownStream		I I I I I I I I I I I I I I I I I I I					I	iverge Areas			
Estimation of		inorgo / irouo			Estimat	tion o	$f_{V_{42}}$	itorge / acue			
	$V_{12} = V_F$	(P)						V _R + (V _F - V _F			
. –	.= .	tion 13-6 or	12 7)					Equation 13-1			
L _{EQ} = D -					L _{EQ} =			-		-	
P _{FM} =	-	Equation (I	Exhibit 13-6)		P _{FD} =			36 using Equ	uation (Exh	ibit 13-7)	
V ₁₂ =	pc/h				V ₁₂ =			88 pc/h			
$V_3^{}$ or $V_{av34}^{}$			-14 or 13-17)		$V_3^{}$ or $V_{av34}^{}$			80 pc/h (Equ	ation 13-1	4 or 13-17)	
Is V_3 or $V_{av34} > 2$,	700 pc/h? 🗌 Ye	s 🗌 No						Yes 🗹 No			
Is V_3 or V_{av34} > 1.	5 * V ₁₂ /2 🗌 Ye	s 🗌 No			Is V_3 or V_{av}	_{/34} > 1.5	* V ₁₂ /2	Yes 🗹 No			
If Yes,V _{12a} =	pc/h (13-19)		-16, 13-18, or		lf Yes,V _{12a} :	=	р 19	c/h (Equation	13-16, 13	-18, or 13-	
Capacity Ch	ecks				Capacit	ty Che	ecks				
	Actual	0	Capacity	LOS F?			Actual	Ca	pacity	LOS F?	
					V _F		7748	Exhibit 13-8	3 9200	No	
V _{FO}		Exhibit 13-8			V _{FO} = V _F	- V _D	6312	Exhibit 13-8	3 9200	No	
FU							1436	Exhibit 13-1	_	No	
Flow Enteri	na Merae In	fluence A	rea					ge Influen			
	Actual		Desirable	Violation?	, 1011 []		Actual	Max Desirat		Violation?	
V _{R12}		Exhibit 13-8			V ₁₂		188	Exhibit 13-8	4400:All	No	
			f Serv	vice De	terminatio	n (if not	F)				
Level of Service Determination (if not F) D _R = 5.475 + 0.00734 v _R + 0.0078 V ₁₂ - 0.00627 L _A								0086 V ₁₂ - 0.		- /	
D _R = (pc/mi/					12	D					
LOS = (Exhibi	-				D _R = 34.2 (pc/mi/ln) LOS = D (Exhibit 13-2)						
Speed Deter					Speed Determination						
					$D_s = 0.687$ (Exhibit 13-12)						
-							(Exhibit	-			
S _R = mph (Exhibit 13-11)											
•	khibit 13-11)						(Exhibit	-			
	khibit 13-13)						(Exhibit				
opyright © 2014 University of Florida, All Rights Reserved					HCS2010 [™]	Version	6 60	Gen	erated: 11/19	9/2015 4:24 PM	

		RAMP	S AND RAM			ORKS	HEET				
General Info	ormation		<u>• /</u>	Site Infor							
Analyst	MLS		F	reeway/Dir of Tr	avel	IR-90 /	Westbound				
Agency or Compar	יע LJBI	nc.	Ju	unction		Martin I	_uther King	Jr Dr			
Date Performed	6/19/	2015	Ju	urisdiction			District 12				
Analysis Time Peri		Peak Hour	A	nalysis Year		2034 B	uild Conditi	on			
Project Description	CUY-90-19.5/2	21.3									
Inputs											
Upstream Adj	Ramp	Freeway Num Ramp Numbe	ber of Lanes, N	4 1					Downstrea Ramp	am Adj	
□Yes	On		ane Length, L _A						Yes	On	
🗹 No	Off	Deceleration I Freeway Volu	Lane Length L _D	670 4630					✓ No	Off	
L _{up} =	ft	Ramp Volume		4830 650					L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	60.0					V -	veh/h	
V _u =	veh/h	Ramp Free-Fl	ow Speed, S _{FR}	25.0					V _D =	ven/n	
Conversion	Conversion to pc/h Under Base Conditions										
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	fp	v = V/PHF	x f _{HV} x f _p	
Freeway	(ven/nr)					0.9	980	1.00	50	24	
Ramp							985	1.00	7	02	
UpStream				-						-	
DownStream											
		Merge Areas						iverge Areas			
Estimation o	of v ₁₂				Estimat	tion o	f v ₁₂				
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F - V _R)P _{ED}		
L _{EQ} =		ition 13-6 or	13-7)		L _{EQ} =			Equation 13-1)	
P _{FM} =		Equation (I	-		P _{FD} =			136 using Equ			
V ₁₂ =	pc/h				V ₁₂ =			86 pc/h			
	•	Faultion 12	11 05 12 17)					•		1 an 10 17)	
V ₃ or V _{av34}			-14 or 13-17)		V_3 or V_{av34}	. 0.7		19 pc/h (Equa	ation 13-14	+ 0113-17)	
Is V_3 or $V_{av34} > 2,$								Yes 🗹 No			
Is V_3 or V_{av34} > 1.					Is V ₃ or V _{av}	_{/34} > 1.5		Yes 🗹 No			
lf Yes,V _{12a} =	pc/h (13-19)		-16, 13-18, or		If Yes,V _{12a}	=	p 19	c/h (Equation	13-16, 13	-18, or 13-	
Capacity Ch	/				Capacit			,)			
	Actual		apacity	LOS F?		<u>y on</u>	Actual	Ca	pacity	LOS F?	
-	/ totadi	Ĭ	apaony	20011	V _F		5024	Exhibit 13-8	1	No	
М		E							-		
V _{FO}		Exhibit 13-8			V _{FO} = V _F	-	4322	Exhibit 13-8	-	No	
					V _R		702	Exhibit 13-10		No	
Flow Enterii					Flow Er	_	-	ge Influen			
	Actual	i r	Desirable	Violation?			Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 13-8			V ₁₂	2	586	Exhibit 13-8	4400:All	No	
Level of Service Determination (if not F)								termination		F)	
D _R = 5.475 + 0.00734 v _R + 0.0078 V ₁₂ - 0.00627 L _A						D _R = 4	.252 + 0.	0086 V ₁₂ - 0.0	009 L _D		
D _R = (pc/mi/	ln)				D _R = 2	0.5 (pc/	/mi/ln)				
LOS = (Exhibi	t 13-2)				LOS = C (Exhibit 13-2)						
Speed Determination						•	· ·	n			
-					Speed DeterminationDs =0.621 (Exhibit 13-12)						
-						•		,			
S _R = mph (Exhibit 13-11)							(Exhibit	-			
•	khibit 13-11)						(Exhibit				
S = mph (Ex	khibit 13-13)						(Exhibit	13-13)			
copyright © 2014 University of Florida, All Rights Reserved					HCS2010 [™]	Version	6 60	Gen	erated: 6/22/	2015 11:34 AN	

			REEWAY	WEAV	NG WOF	RKSHEE	Т		
Genera	al Information	on			Site Info	rmation			
		MLS LJB Inc 2/27/20 AM Pe: 0-19.50/21.30	15		Freeway/Dir Weaving Seg Analysis Yea	gment Locati	on E 72n	/ Eastbound d St / MLK Jr Existing Cond	
Inputs									
Weaving n Weaving s Freeway fr	onfiguration umber of lanes, N egment length, L ee-flow speed, Ff	S S		One-Sided 4 515ft 60 mph	Segment typ Freeway min Freeway max Terrain type	imum speed			Freeway 40 2300 Leve
Convei	rsions to po	1	1	1	1		1 .		1 ())
	V (veh/h)	PHF	Truck (%)	RV (%)	E _T	E _R	f _{HV}	fp	v (pc/h)
V _{FF}	3335	0.92	4	0	1.5	1.2	0.980	1.00	3698
V _{RF}	60	0.92	0	0	1.5	1.2	1.000	1.00	65
V _{FR}	625	0.92	4	0	1.5	1.2	0.980	1.00	693
V _{RR}	0	0.92	0	0	1.5	1.2	1.000	1.00	0
V _{NW}	3698							V =	4456
V _W	758								
VR	0.170								
Config	uration Cha	aracteris	tics		n				
Minimum r	maneuver lanes, l	N _{WL}		2 lc	Minimum we	aving lane c	hanges, LC _{MIN}		758 lc/h
Interchang	ge density, ID			1.2 int/mi	Weaving lan	e changes, l	-C _w		930 lc/h
Minimum I	RF lane changes,	LC_{RF}		1 lc/pc	Non-weaving	g lane chang	es, LC _{NW}		271 lc/h
Minimum I	FR lane changes,	LC_{FR}		1 lc/pc	Total lane ch	nanges, LC _{AL}	L		1201 lc/h
Minimum I	RR lane changes,	, LC _{RR}		lc/pc	Non-weaving	g vehicle ind	ex, I _{NW}		229
Weavir	ng Segment	t Speed,	Density, I	_evel of	Service,	and Cap	oacity		
Ŭ Ŭ	segment flow rate			4370 veh/h	Weaving inte				0.441
-	segment capacity,	C _W		7906 veh/h	Weaving seg				49.9 mph
Ŭ Ŭ	egment v/c ratio	_		0.553	Average wea				53.9 mph
-	egment density, I	ט	22	2.3 pc/mi/ln	Average nor				49.2 mph
	ervice, LOS			С	Maximum we	eaving length	n, L _{MAX}		4233 ft
Chapter 13,	segments longer th , "Freeway Merge and the strate exceed the stra	and Diverge Se	gments".	-		olated merge	and diverge are	eas using the	procedures of

HCS 2010TM Version 6.60

Generated: 6/22/2015 1:45 PM

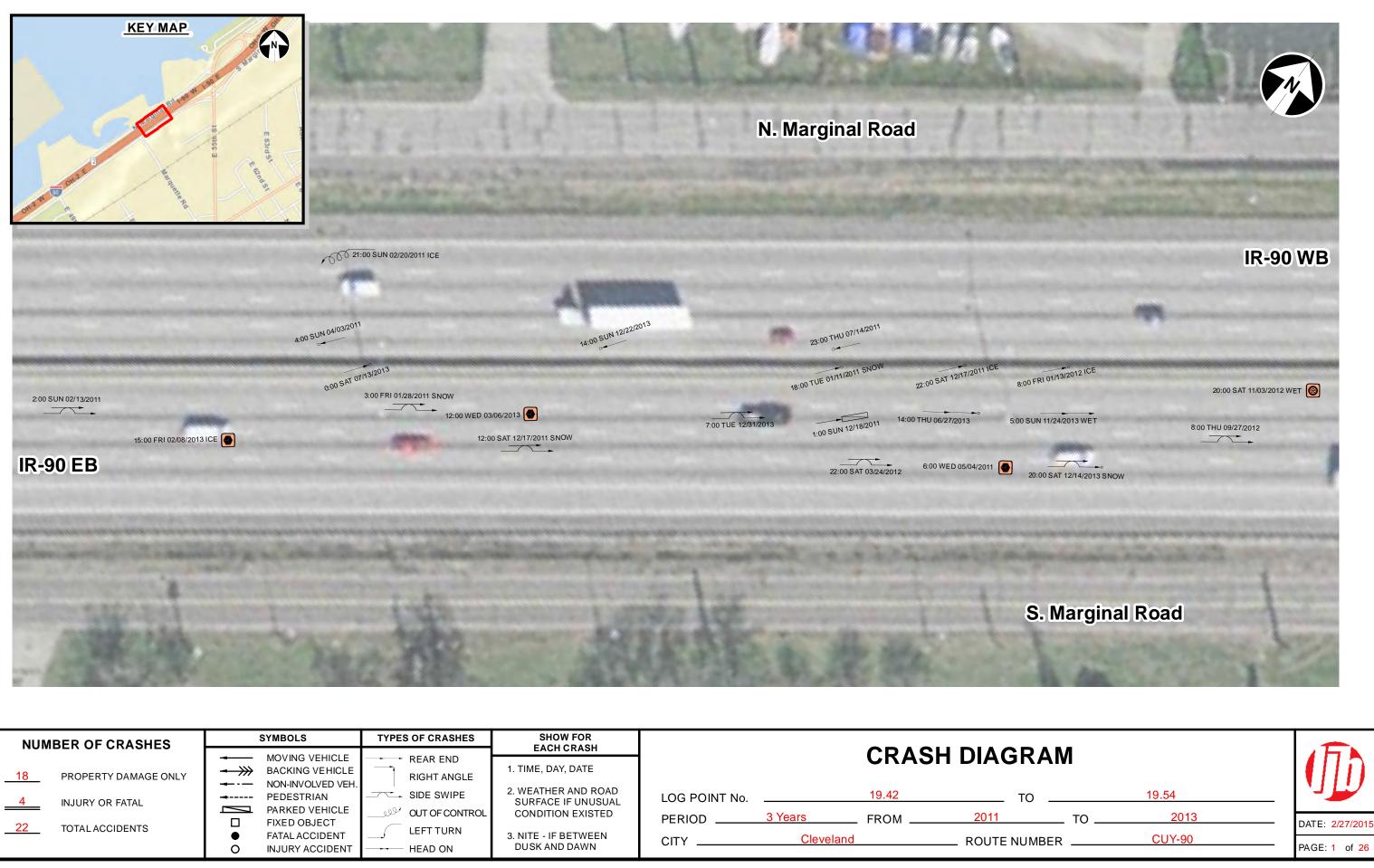
			REEWAY	WEAV	NG WOR	RKSHEE	Т		
General Information				Site Information					
AnalystMLSAgency/CompanyLJB Inc.Date Performed2/27/2015Analysis Time PeriodPM Peak HourProject DescriptionCUY-90-19.50/21.30				Freeway/Dir of TravelIR-90 / EastboundWeaving Segment LocationE 72nd St / MLK Jr DrAnalysis Year2034 Existing Condition					
Inputs		10.00/21.00							
Weaving configuration One-Sided				Freeway minimum speed, S _{MIN}					
Convers	sions to po	1	ľ		1			1	
	V (veh/h)	PHF	Truck (%)	RV (%)	Ε _Τ	E _R	f _{HV}	fp	v (pc/h)
V _{FF}	5385	0.92	4	0	1.5	1.2	0.980	1.00	5970
V _{RF}	160	0.92	1	0	1.5	1.2	0.995	1.00	175
V _{FR}	545	0.92	1	0	1.5	1.2	0.995	1.00	595
V _{RR}	0	0.92	0	0	1.5	1.2	1.000	1.00	0
V _{NW}	5970		-					V =	6740
V _W	770							_	
VR	0.114								
Configu	ration Cha	aracterist	ics						
Minimum m	aneuver lanes, l	N _{WI}		2 lc	Minimum weaving lane changes, LC _{MIN}				
Interchange	edensity, ID			1.2 int/mi	Weaving lan	942 lc/h			
Minimum RI	F lane changes,	LC _{RF}		1 lc/pc	Non-weaving	739 lc/h			
Minimum FF	R lane changes,	LC _{FR}		1 lc/pc	Total lane ch	1681 lc/h			
Minimum RI	R lane changes,	, LC _{RR}		lc/pc	Non-weaving	g vehicle ind	ex, I _{NW}		369
Weaving	g Segment	t Speed,	Density, I	_evel of					
	gment flow rate	-		6620 veh/h	Weaving inte				0.575
Weaving segment capacity, c _w 8071 veh/h				Weaving segment speed, S				47.0 mph	
Weaving segment v/c ratio 0.820				Average weaving speed, S_{W}				52.7 mph	
Weaving se	gment density, I	D	35	5.8 pc/mi/ln					46.4 mph
Level of Ser	rvice, LOS			Е	Maximum weaving length, L _{MAX} 3678				3678 ff
Notes					<u></u>				
Chapter 13, "	egments longer th Freeway Merge a es that exceed the	and Diverge Se	gments".	-		olated merge	and diverge an	eas using the	procedures of

HCS 2010TM Version 6.60

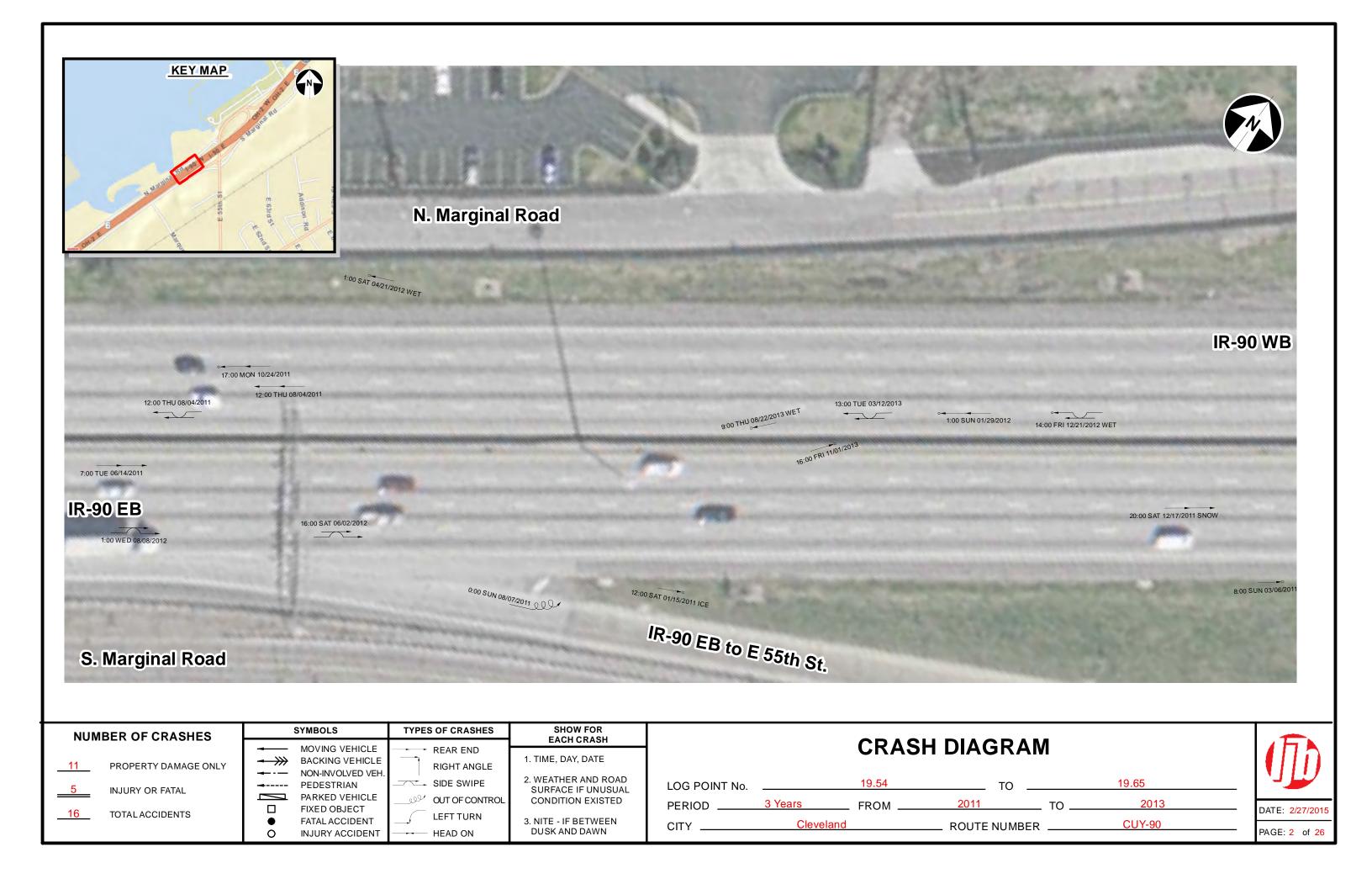
Generated: 11/19/2015 3:51 PM

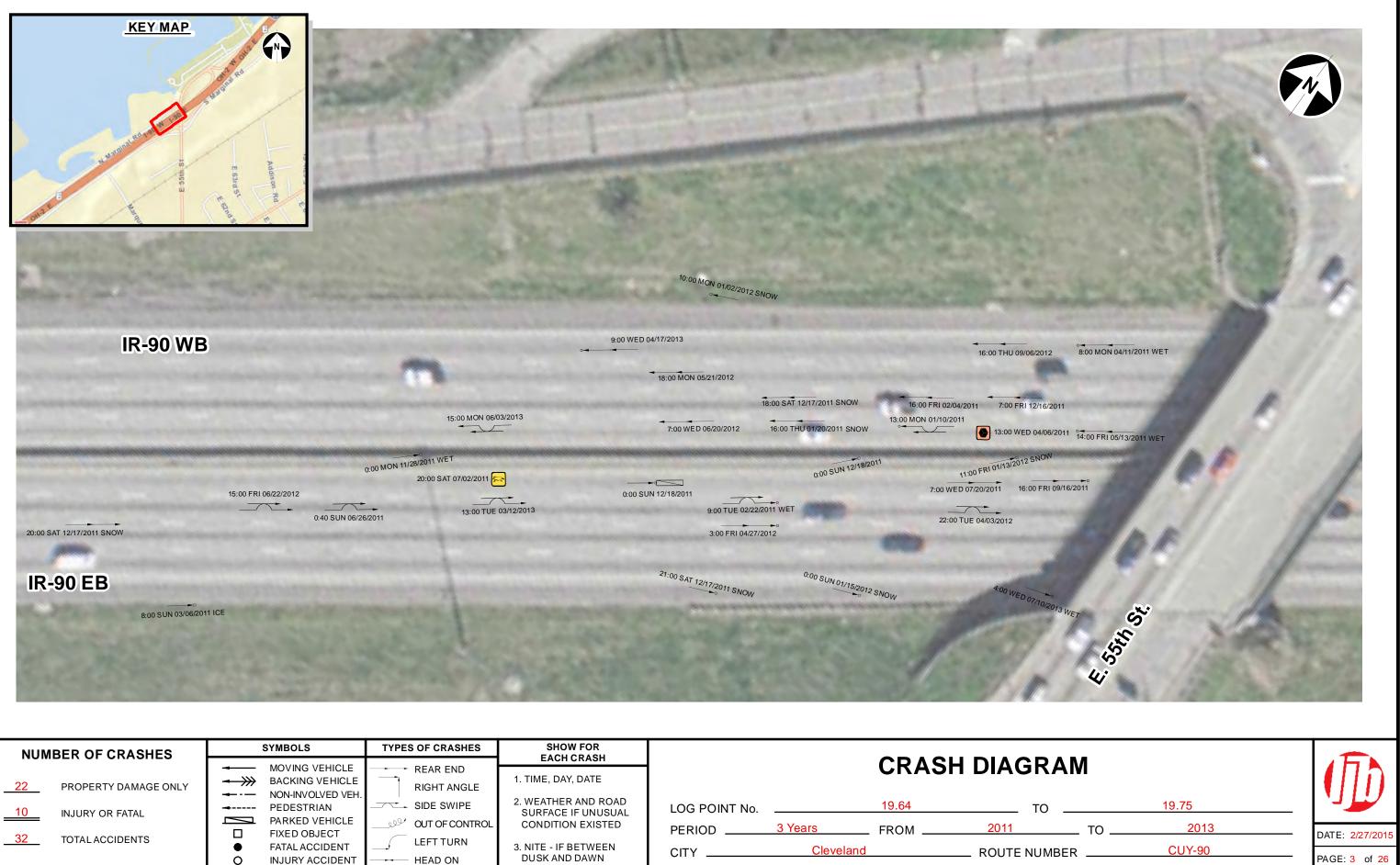
<u></u>	1f		FREEWA	WEAV						
General	Informati	on			Site Information					
Analyst MLS Agency/Company LJB Inc. Date Performed 2/27/2015 Analysis Time Period AM Peak Hour					Freeway/Dir of TravelIR-90 / WestboundWeaving Segment LocationMLK Jr Dr / E 72nd StAnalysis Year2034 Existing Condition					
,	ription CUY-9	0-19.50/21.30)							
Inputs					1					
Weaving number of lanes, N 4 Weaving segment length 1 475ft				Freeway minimum speed, S _{MIN}						
Convers	ions to p	c/h Unde	r Base Co	ondition	S					
	V (veh/h)	PHF	Truck (%)	RV (%)	Ε _Τ	ER	f _{HV}	fp	v (pc/h)	
√ _{FF}	5810	0.92	4	0	1.5	1.2	0.980	1.00	6442	
V _{RF}	350	0.92	7	0	1.5	1.2	0.966	1.00	394	
V _{FR}	130	0.92	3	0	1.5	1.2	0.985	1.00	143	
V _{RR}	0	0.92	0	0	1.5	1.2	1.000	1.00	0	
V _{NW}	6442				•		•	V =	6979	
V _W	537							•		
/R	0.077									
Configu	ration Ch	aracteris	tics							
Minimum ma	aneuver lanes,	N _{WL}		2 lc	Minimum weaving lane changes, LC _{MIN} 53					
Interchange	density, ID			1.2 int/mi	Weaving lane changes, LC _w				692 lc/	
Minimum RF	lane changes	, LC _{RF}		1 lc/pc	Non-weaving lane changes, LC _{NW}				814 lc/	
Minimum FF	R lane changes	, LC _{FR}		1 lc/pc	Total lane ch	nanges, LC _{Al}	L		1506 lc/	
Minimum RF	R lane changes	s, LC _{RR}		lc/pc	Non-weaving vehicle index, I _{NW} 3					
Weaving	y Segmen	t Speed,	Density, I	_evel of	Service,	and Ca	pacity			
Weaving segment flow rate, v 6837 veh/h			Weaving inte				0.56			
Weaving segment capacity, c _w 8169 veh/h			Weaving segment speed, S				48.1 mp			
Weaving segment v/c ratio 0.837				Average weaving speed, S_w				52.8 mp		
Weaving segment density, D 36.3 pc/mi/ln				•					47.8 mp	
Level of Service, LOS E				E	Maximum weaving length, L _{MAX} 331					

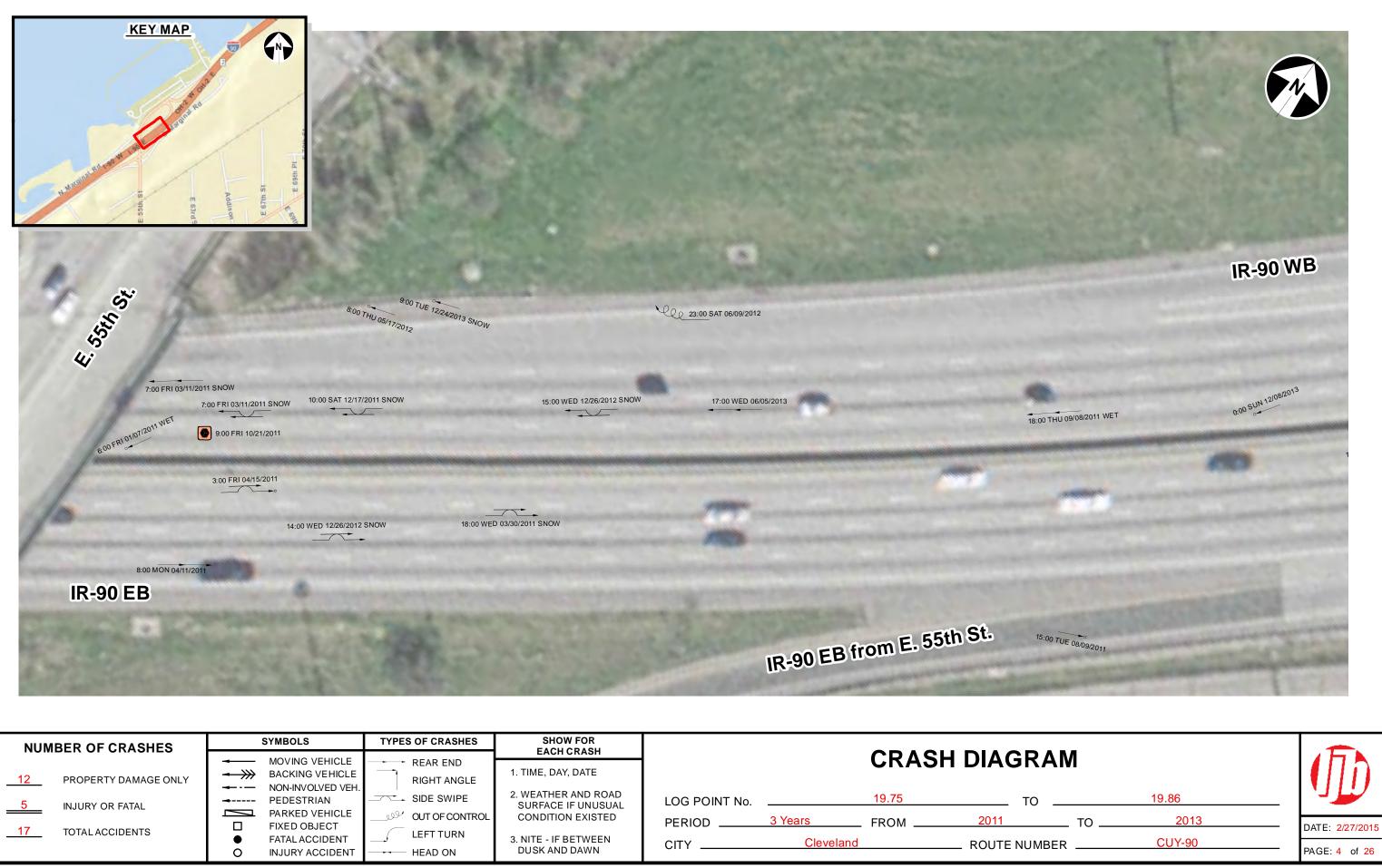
HCS 2010TM Version 6.60


Generated: 6/22/2015 1:46 PM

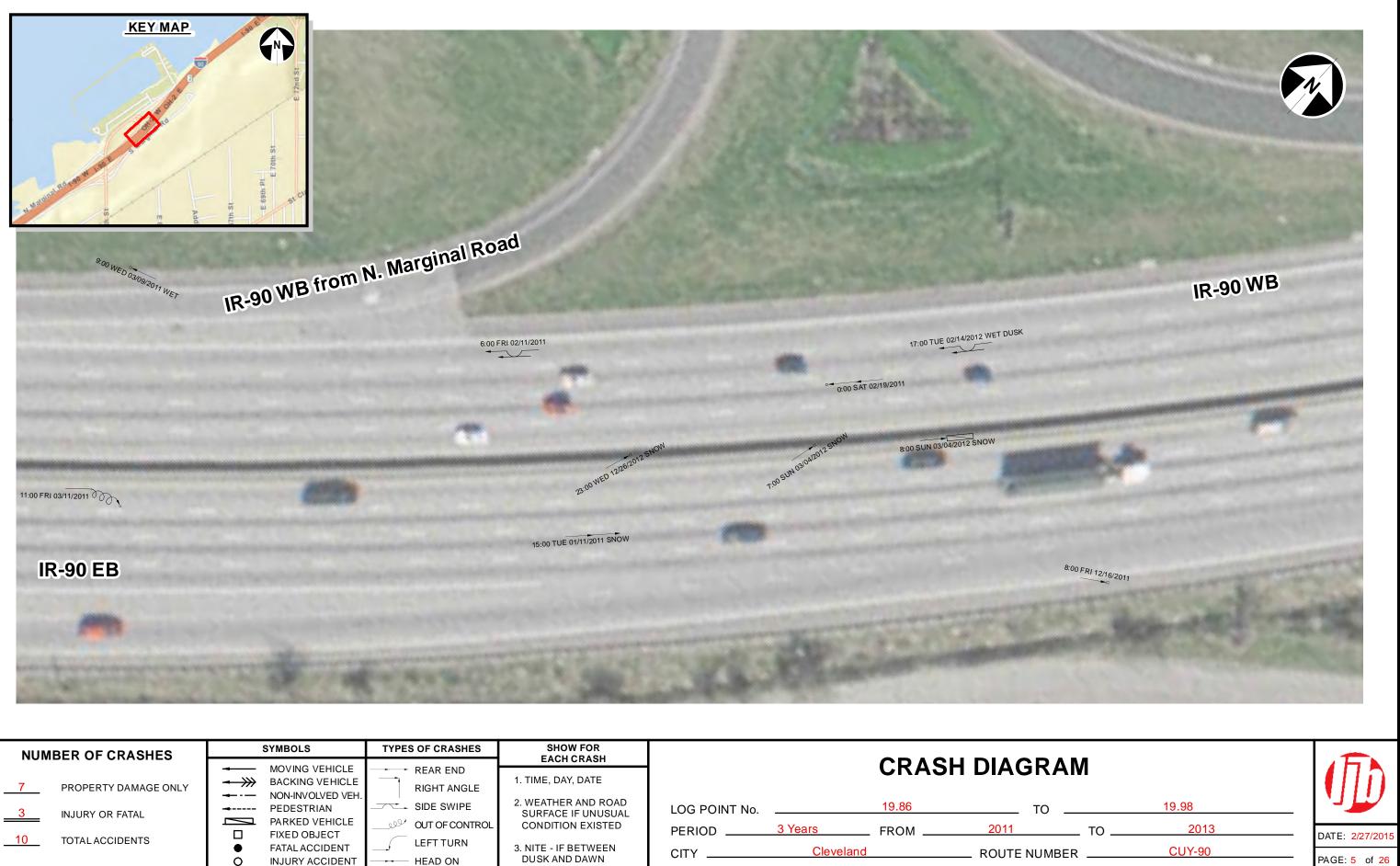
		F	REEWAY	' WEAV	ING WOF	RKSHEE	Т		
General Information				Site Information					
AnalystMLSAgency/CompanyLJB Inc.Date Performed2/27/2015Analysis Time PeriodPM Peak HourProject Description CUY-90-19.50/21.30				Freeway/Dir of Travel IR-90 / Westbound Weaving Segment Location MLK Jr Dr / E 72nd St Analysis Year 2034 Existing Condition					
Inputs					1				
Weaving configurationOne-SidedWeaving number of lanes, N4Weaving segment length, Ls475ftFreeway free-flow speed, FFS60 mph				Segment typ Freeway min Freeway max Terrain type	imum speed			Freeway 40 2300 Leve	
Conve	rsions to po	1	1	1	1			1	
	V (veh/h)	PHF	Truck (%)	RV (%)	Ε _Τ	E _R	f _{HV}	fp	v (pc/h)
V _{FF}	3990	0.92	4	0	1.5	1.2	0.980	1.00	4424
V _{RF}	500	0.92	2	0	1.5	1.2	0.990	1.00	549
V _{FR}	120	0.92	5	0	1.5	1.2	0.976	1.00	134
V _{RR}	0	0.92	0	0	1.5	1.2	1.000	1.00	0
V _{NW}	4424							V =	5107
V _w	683								-
VR	0.134								
Config	uration Cha	aracterist	ics		*				
Minimum r	maneuver lanes, l	N _{WL}		2 lc	Minimum weaving lane changes, LC _{MIN}				
Interchang	je density, ID			1.2 int/mi	Weaving lan	838 lc/h			
Minimum I	RF lane changes,	LC _{RF}		1 lc/pc	Non-weaving	398 lc/h			
Minimum I	FR lane changes,	LC _{FR}		1 lc/pc					
Minimum I	RR lane changes,	LC _{RR}		lc/pc	- ////				
Weavir	ng Segment	t Speed,	Density, I						
	segment flow rate,	-		5011 veh/h	Weaving inte				0.481
Weaving segment capacity, c _w 8000 veh/h			Weaving segment speed, S				49.5 mph		
Weaving segment v/c ratio 0.626				Average weaving speed, S_{W}				53.5 mph	
Weaving segment density, D 25.8 pc/mi/ln				5.8 pc/mi/ln					49.0 mph
Level of Service, LOS C				С	Maximum weaving length, L _{MAX} 383				3870 ft
Notes									
Chapter 13,	segments longer th , "Freeway Merge a nes that exceed the	and Diverge Se	gments".	-		olated merge	and diverge are	eas using the	procedures of

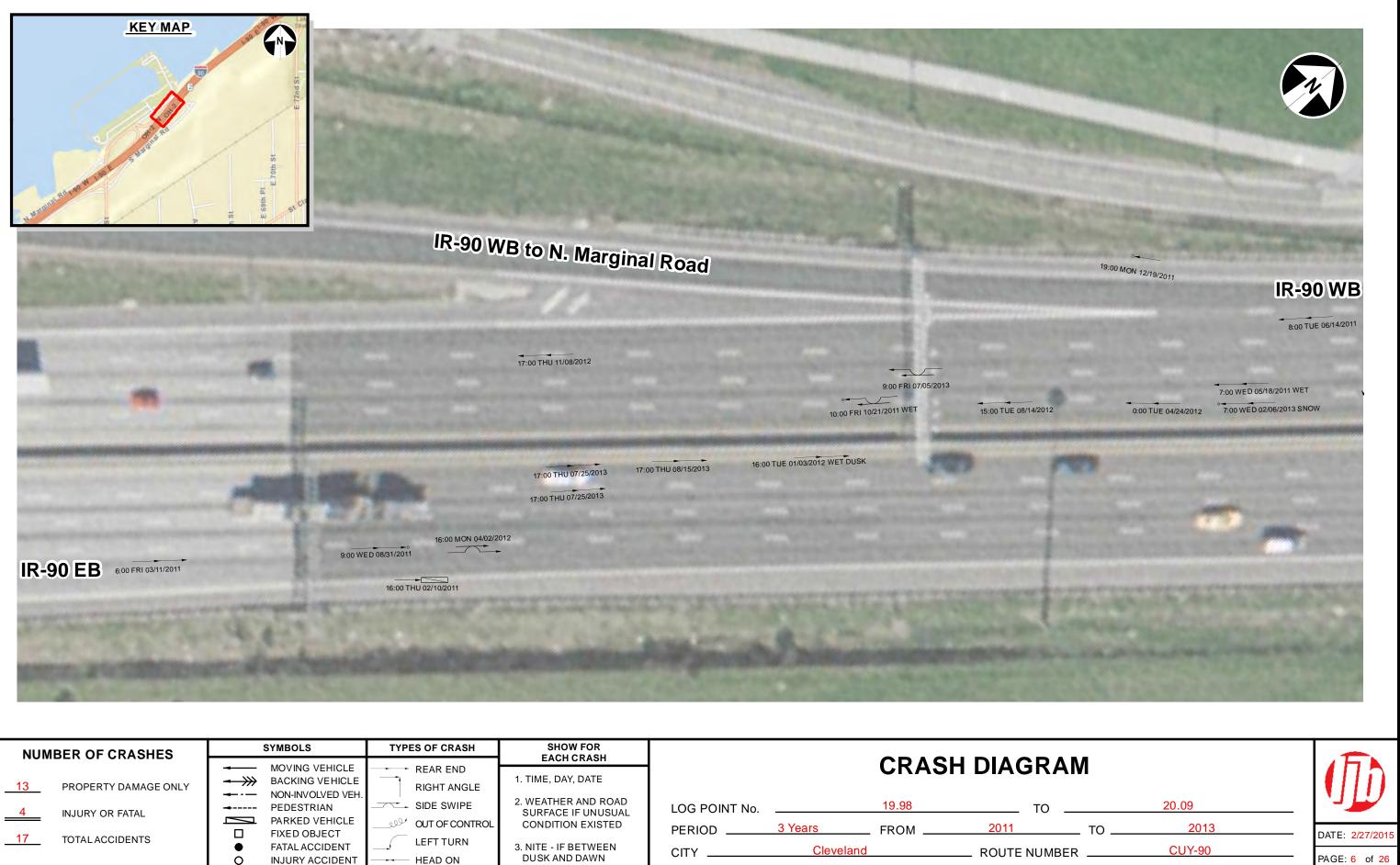

HCS 2010TM Version 6.60

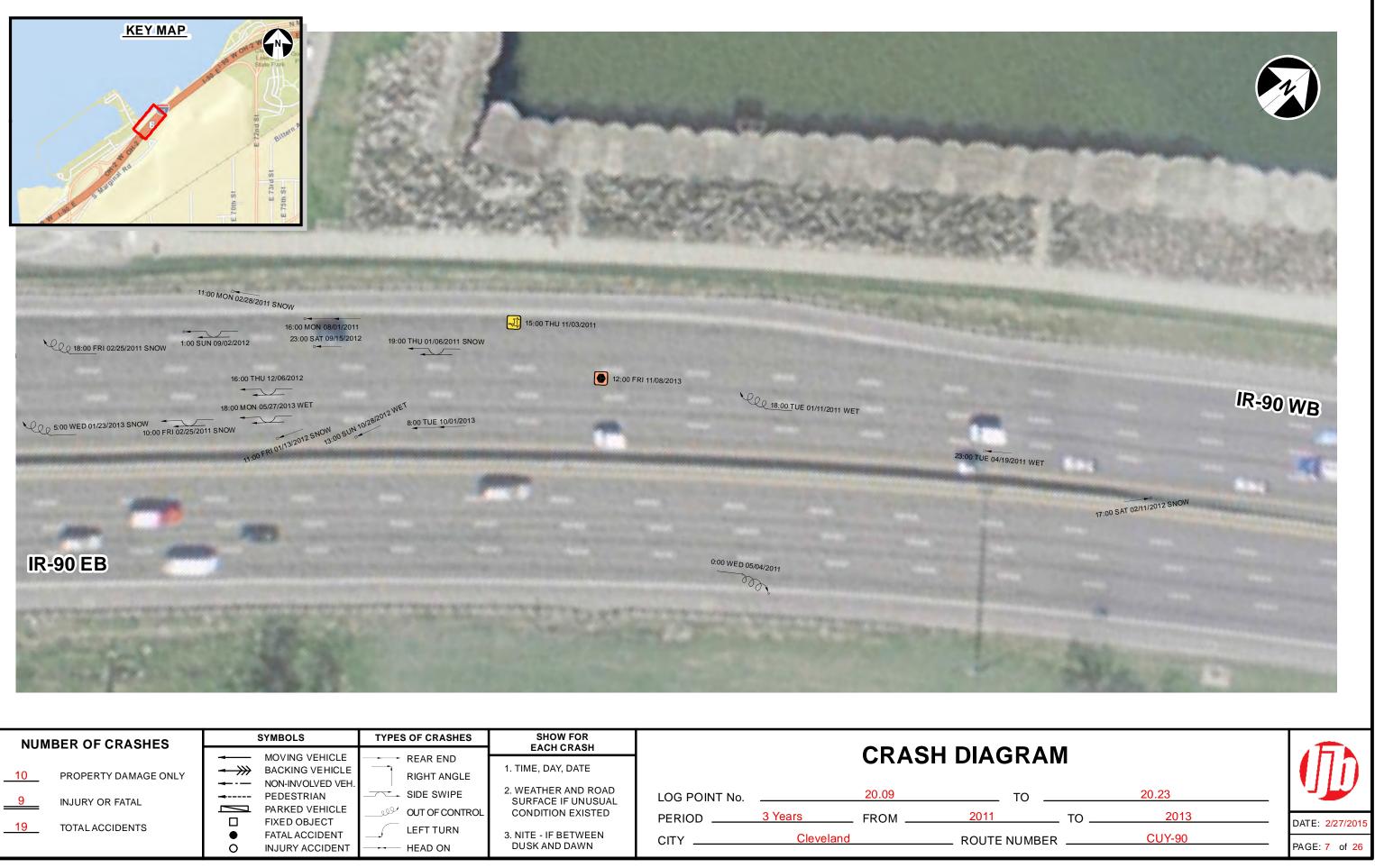

Generated: 6/22/2015 1:46 PM

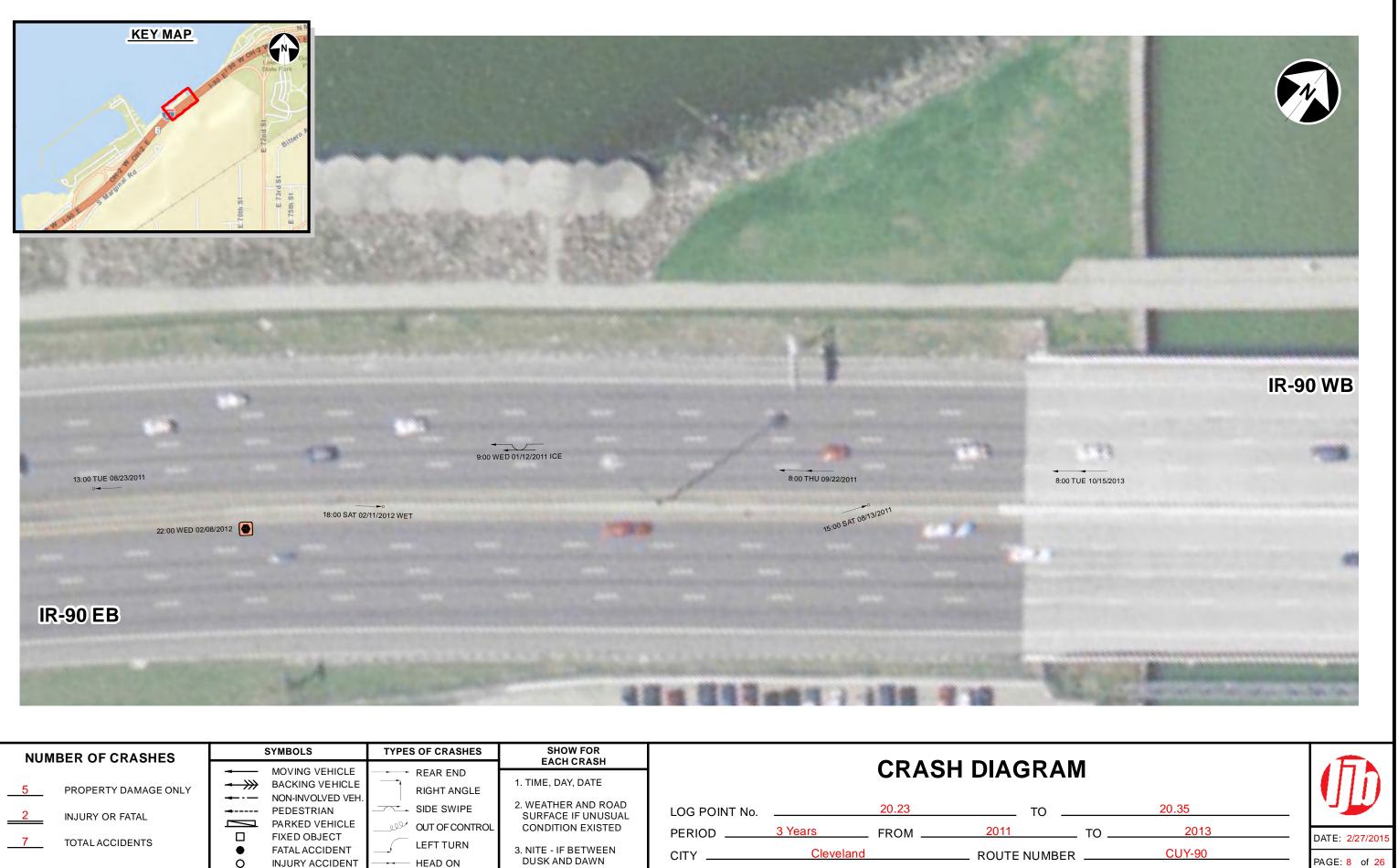


NUMBER OF CRASHES	SYMBOLS TYPES OF CRASHES		SHOW FOR				
<u>18</u> PROPERTY DAMAGE ONLY	MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH	RIGHT ANGLE	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD				1 DIAGR/
4 INJURY OR FATAL	PEDESTRIAN PARKED VEHICLE FIXED OBJECT	SIDE SWIPE	SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT No.	3 Years	19.42	TO 2011
22 TOTAL ACCIDENTS	FATAL ACCIDENT INJURY ACCIDENT	LEFT TURN HEAD ON	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		ROUTE NUME

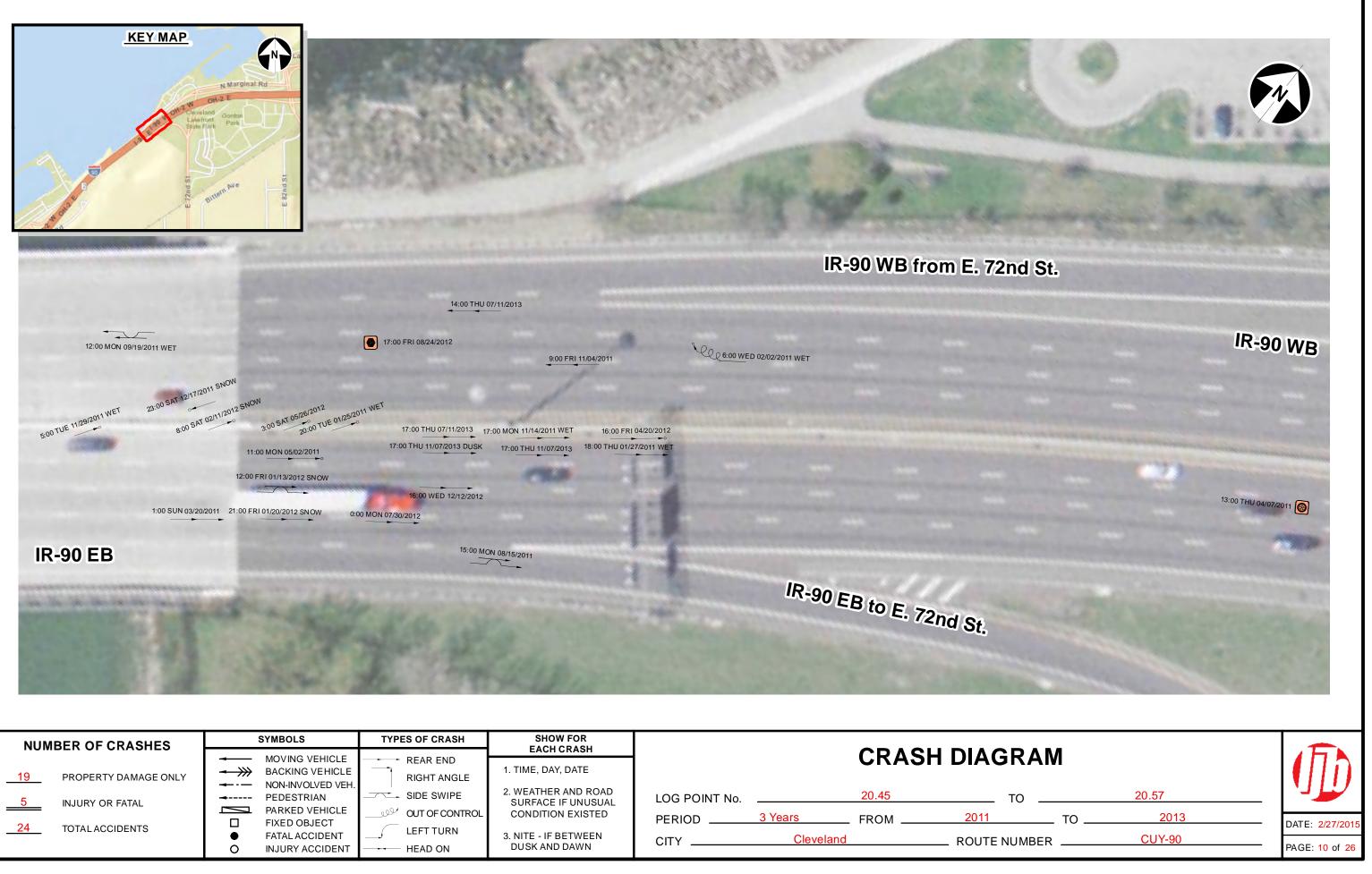


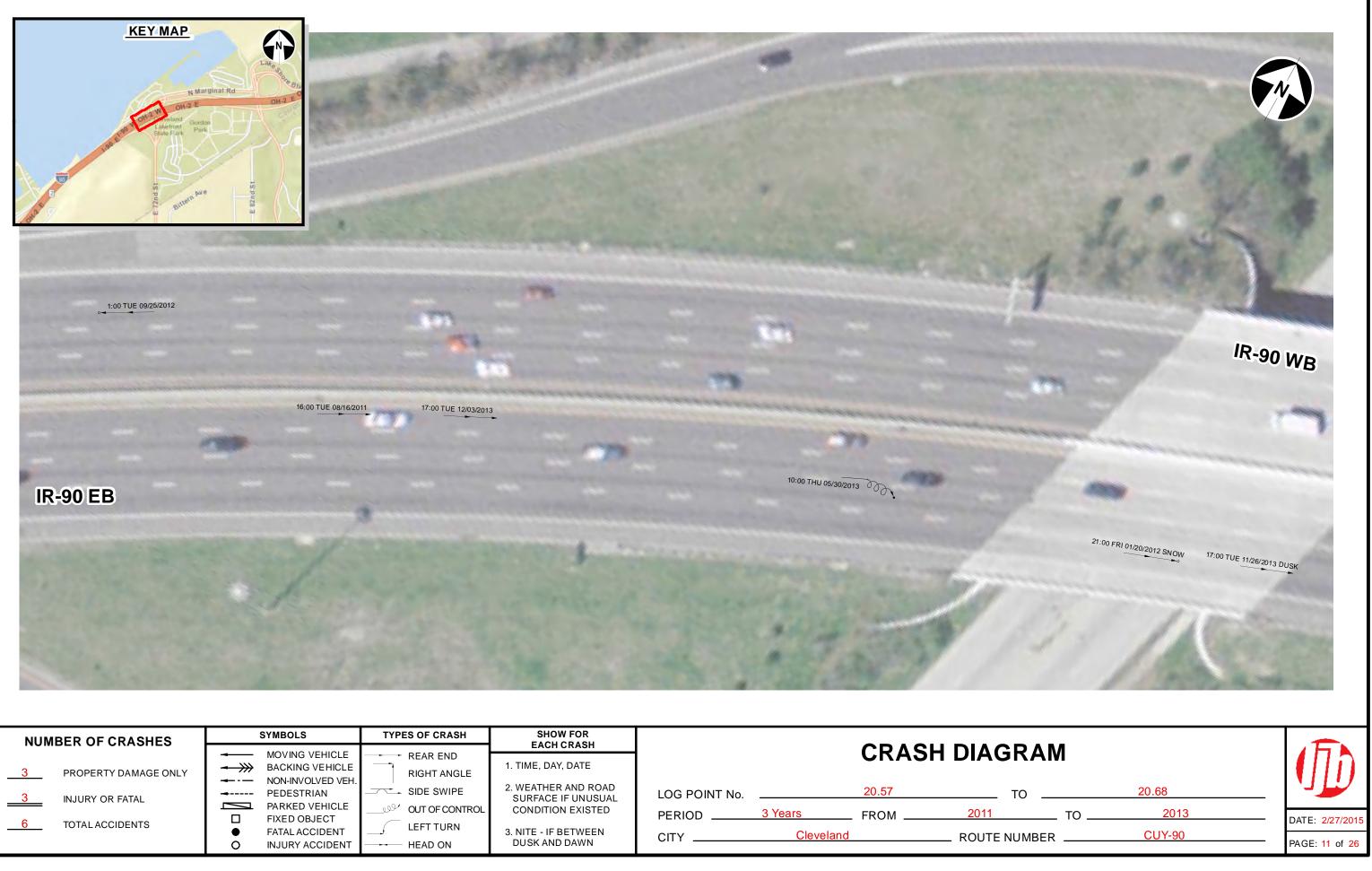

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES	SHOW FOR				
22 PROPERTY DAMAGE ONLY 10 INJURY OR FATAL 32 TOTAL ACCIDENTS	 MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT NJURY ACCIDENT 	REAR END RIGHT ANGLE SIDE SWIPE OUT OF CONTROL LEFT TURN HEAD ON	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN DUSK AND DAWN	LOG POINT №. PERIOD CITY	3 Years Cleveland	19.64 . FROM	DIAGR/ TO 2011 ROUTE NUME

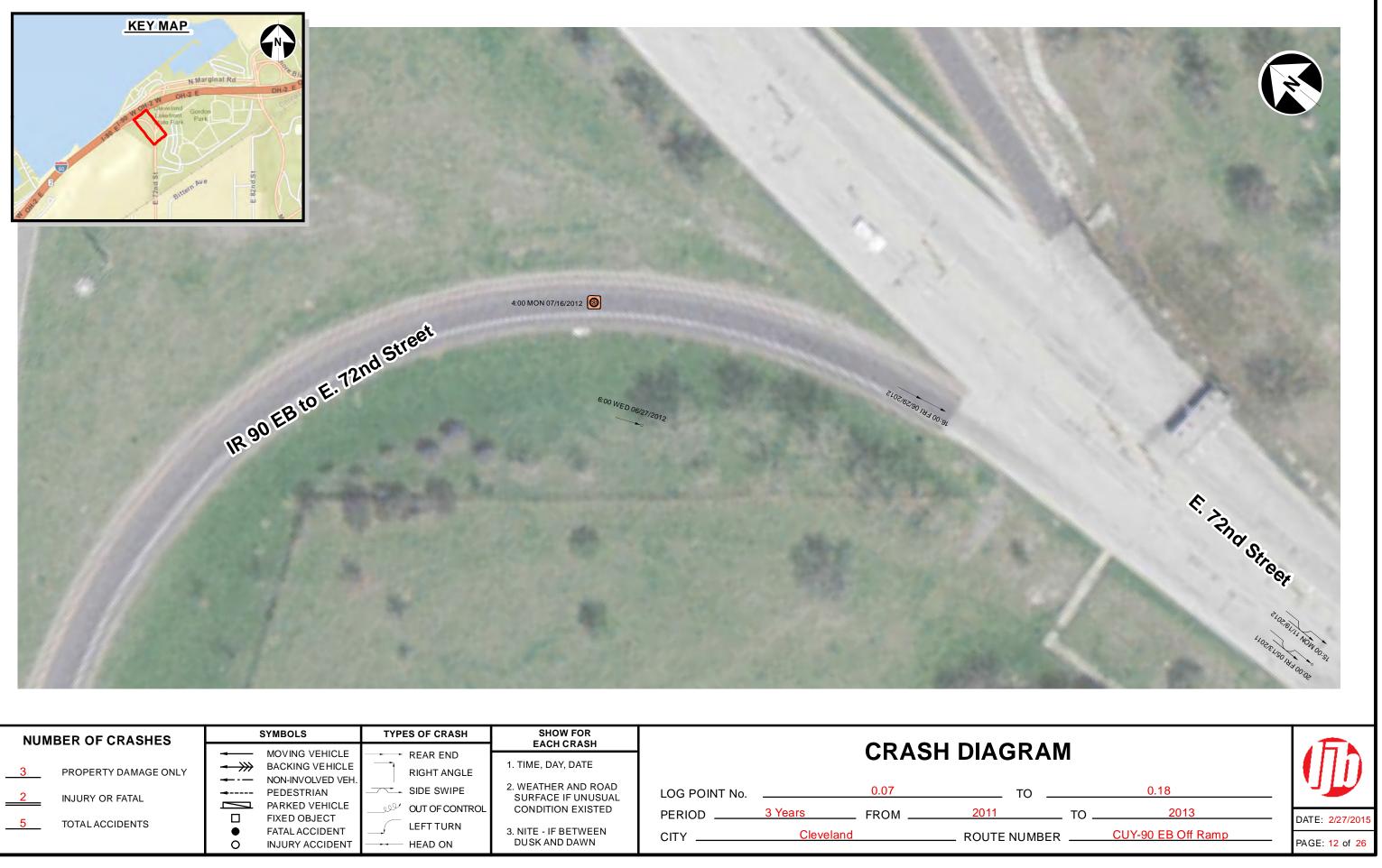

NUMBER OF CRASHES	SYMBOLS TYPES OF CRASHES		SHOW FOR				
12 PROPERTY DAMAGE ONLY 5 INJURY OR FATAL 17 TOTAL ACCIDENTS	 MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT NJURY ACCIDENT 	RIGHT ANGLE	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN DUSK AND DAWN	LOG POINT №. PERIOD CITY	3 Years Cleveland	CRASH 19.75 FROM	DIAGRA TO 2011 ROUTE NUME

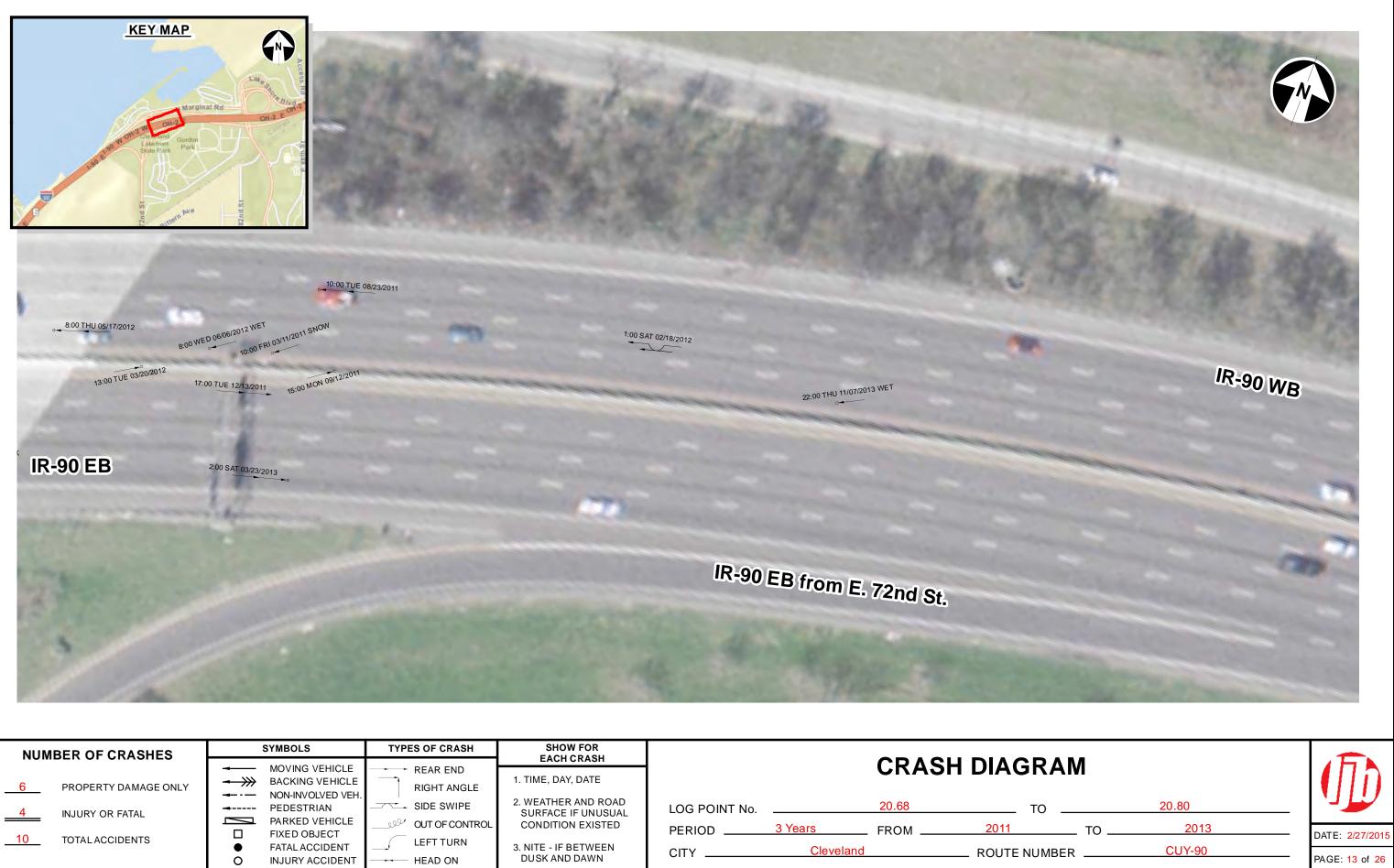

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES	SHOW FOR				
		REAR END	EACH CRASH			CRASH	I DIAGR
7 PROPERTY DAMAGE ONLY	BACKING VEHICLE NON-INVOLVED VEH.	RIGHT ANGLE	1. TIME, DAY, DATE				
3 INJURY OR FATAL	PEDESTRIAN		2. WEATHER AND ROAD SURFACE IF UNUSUAL	LOG POINT No.		19.86	то
	PARKED VEHICLE		CONDITION EXISTED	PERIOD	3 Years	_ FROM	2011
<u>10</u> TOTAL ACCIDENTS	 FATAL ACCIDENT INJURY ACCIDENT 	LEFT TURN HEAD ON	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		ROUTE NUME

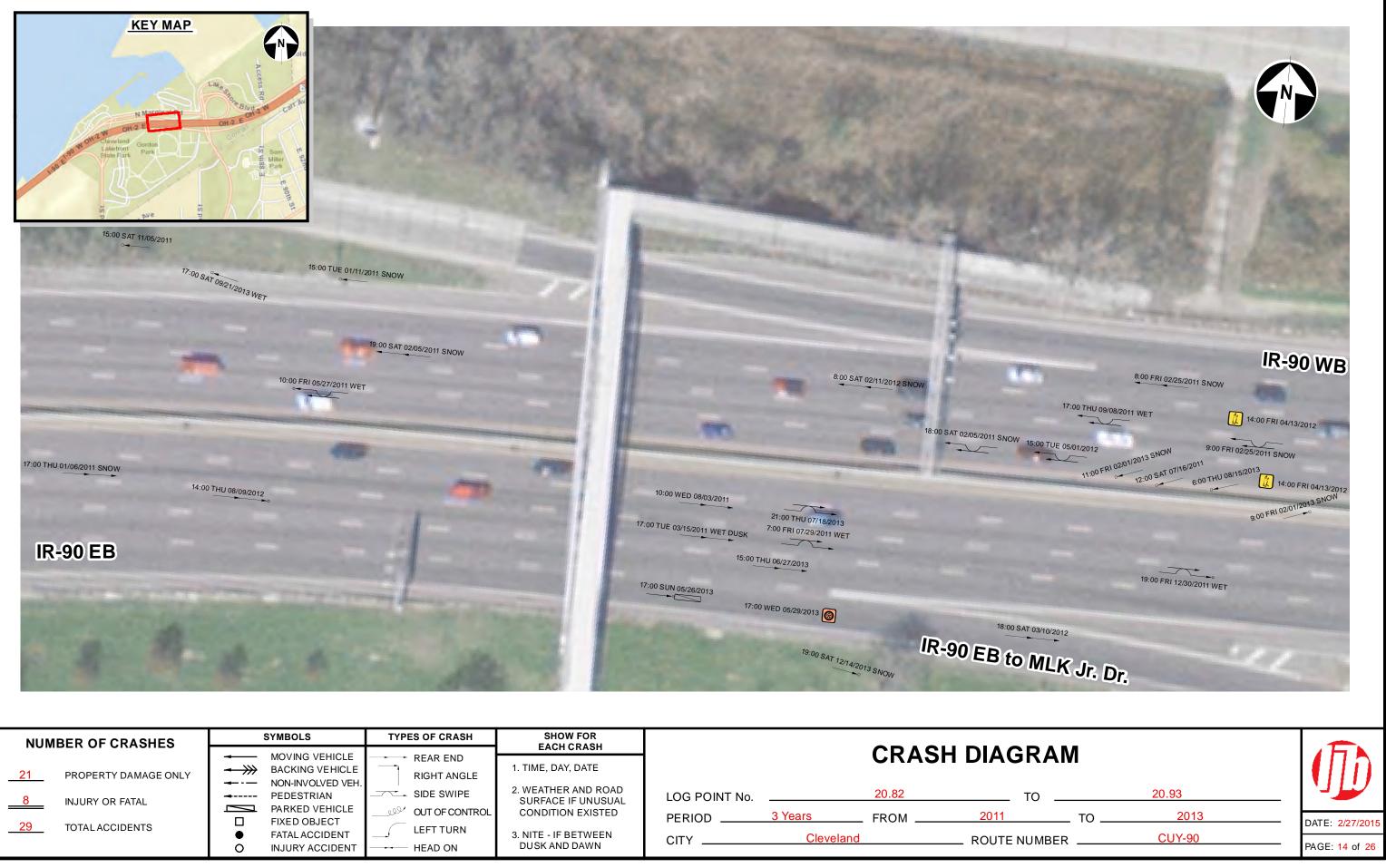
NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR EACH CRASH				
	HOVING VEHICLE		1. TIME, DAY, DATE			CRASH	DIAGR
13 PROPERTY DAMAGE ONLY 4 INJURY OR FATAL	← · · · · NON-INVOLVED VEH. ← · · · · PEDESTRIAN ← · · · · · PARKED VEHICLE	RIGHT ANGLE	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT No. PERIOD	3 Years	19.98	TO
17 TOTAL ACCIDENTS	 FIXED OBJECT FATAL ACCIDENT INJURY ACCIDENT 	LEFT TURN	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		_ ROUTE NUME

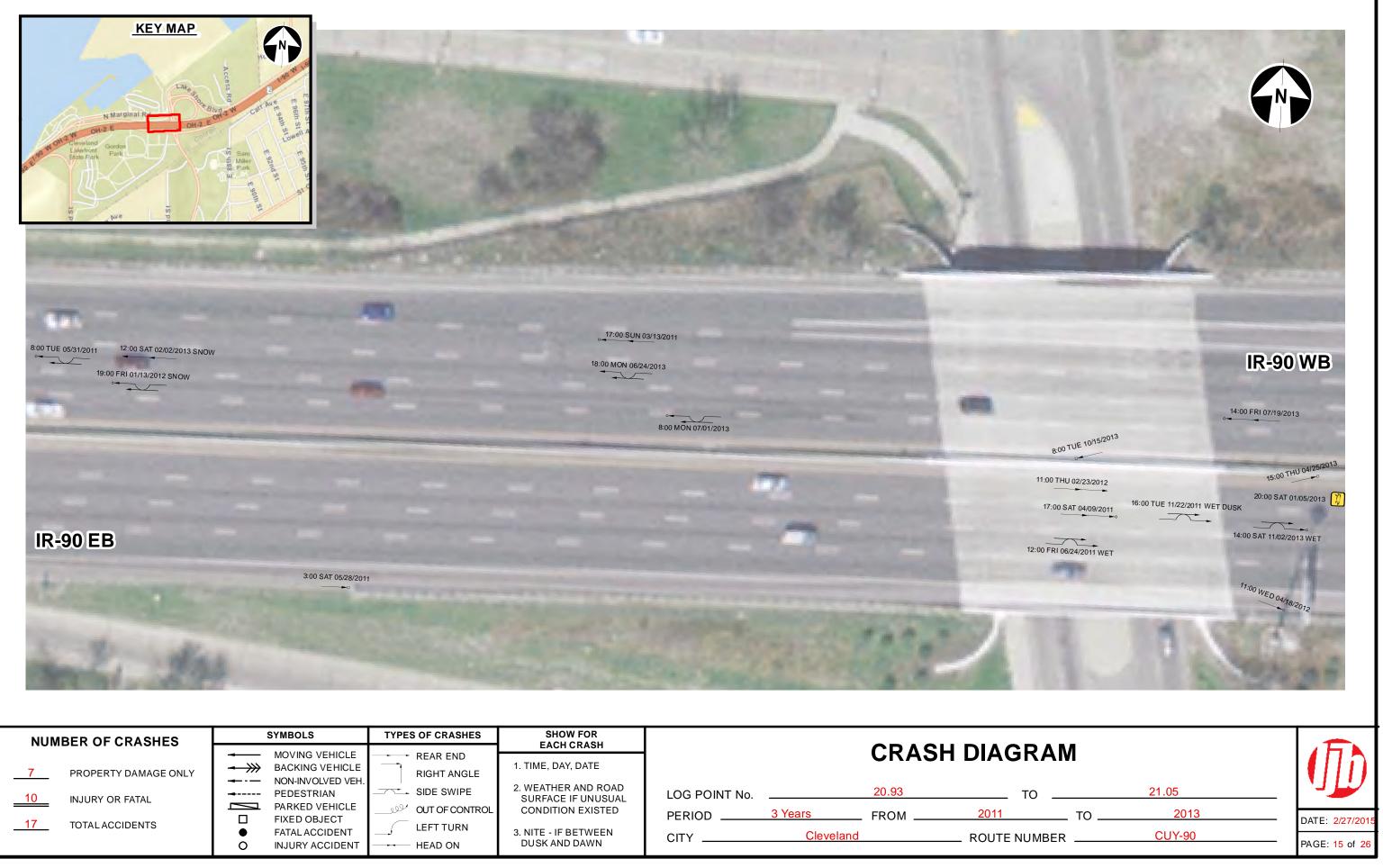

NUMBER OF CRASHES	SYMBOLS TYPES OF CRASHES		SHOW FOR EACH CRASH				
	MOVING VEHICLE BACKING VEHICLE		1. TIME, DAY, DATE			CRASH	I DIAGR
10 PROPERTY DAMAGE ONLY	NON-INVOLVED VEH. PEDESTRIAN	RIGHT ANGLE	2. WEATHER AND ROAD	LOG POINT No.		20.09	то
<u>9</u> INJURY OR FATAL <u>19</u> TOTAL ACCIDENTS	PARKED VEHICLE		SURFACE IF UNUSUAL CONDITION EXISTED	PERIOD	3 Years	FROM	2011
	FATAL ACCIDENTINJURY ACCIDENT	LEFT TURN HEAD ON	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		ROUTE NUME

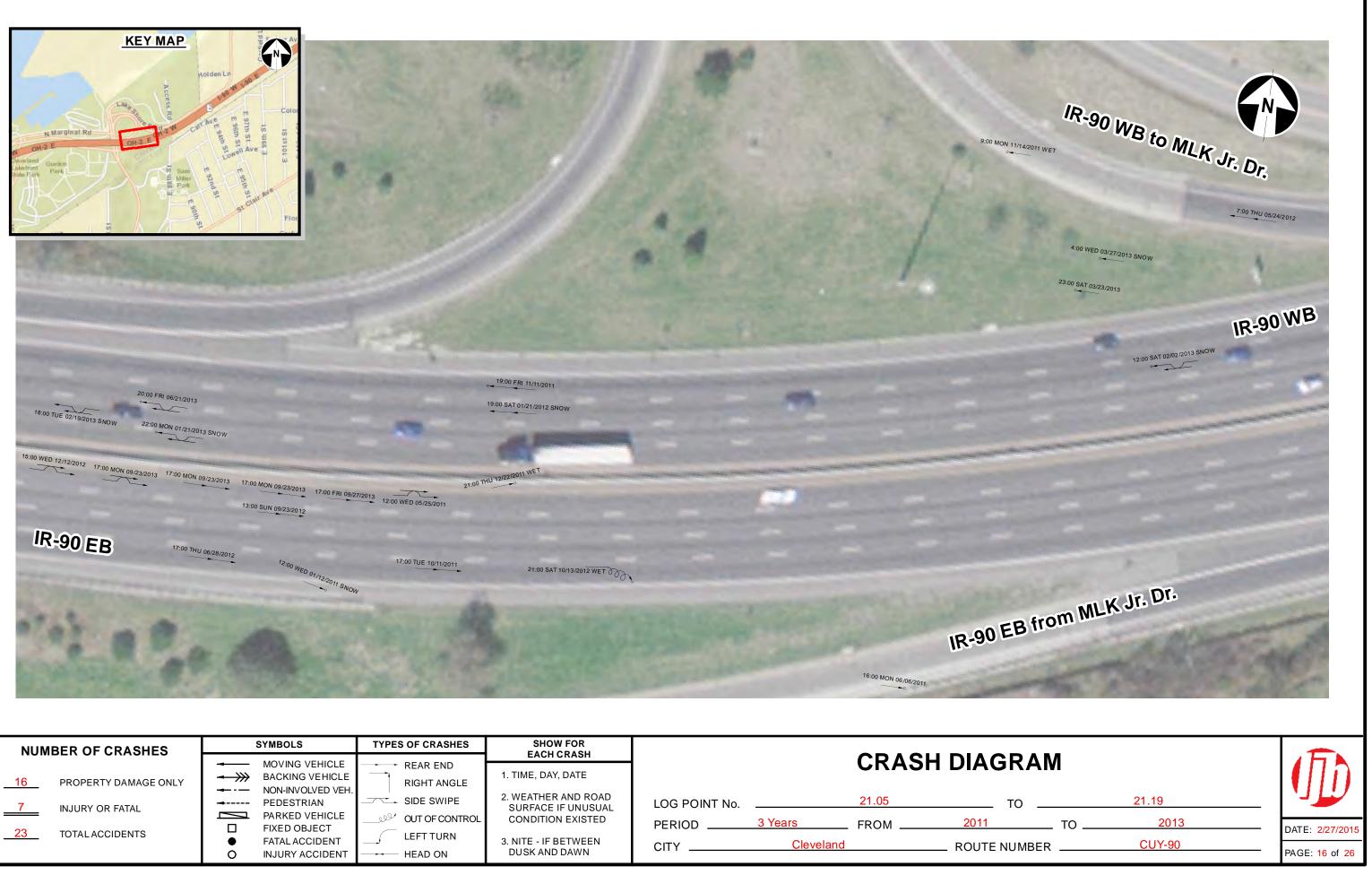

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES	SHOW FOR				
Nomber of Oradiled		REAR END	EACH CRASH			CRAS	H DIAGRA
5 PROPERTY DAMAGE ONLY	BACKING VEHICLE	RIGHT ANGLE	1. TIME, DAY, DATE				
2 INJURY OR FATAL	NON-INVOLVED VEH. PEDESTRIAN		2. WEATHER AND ROAD SURFACE IF UNUSUAL	LOG POINT No.		20.23	то
7 TOTAL ACCIDENTS	PARKED VEHICLE		CONDITION EXISTED	PERIOD	3 Years	_ FROM	2011
	FATAL ACCIDENTINJURY ACCIDENT	LEFT TURN HEAD ON	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		ROUTE NUMB

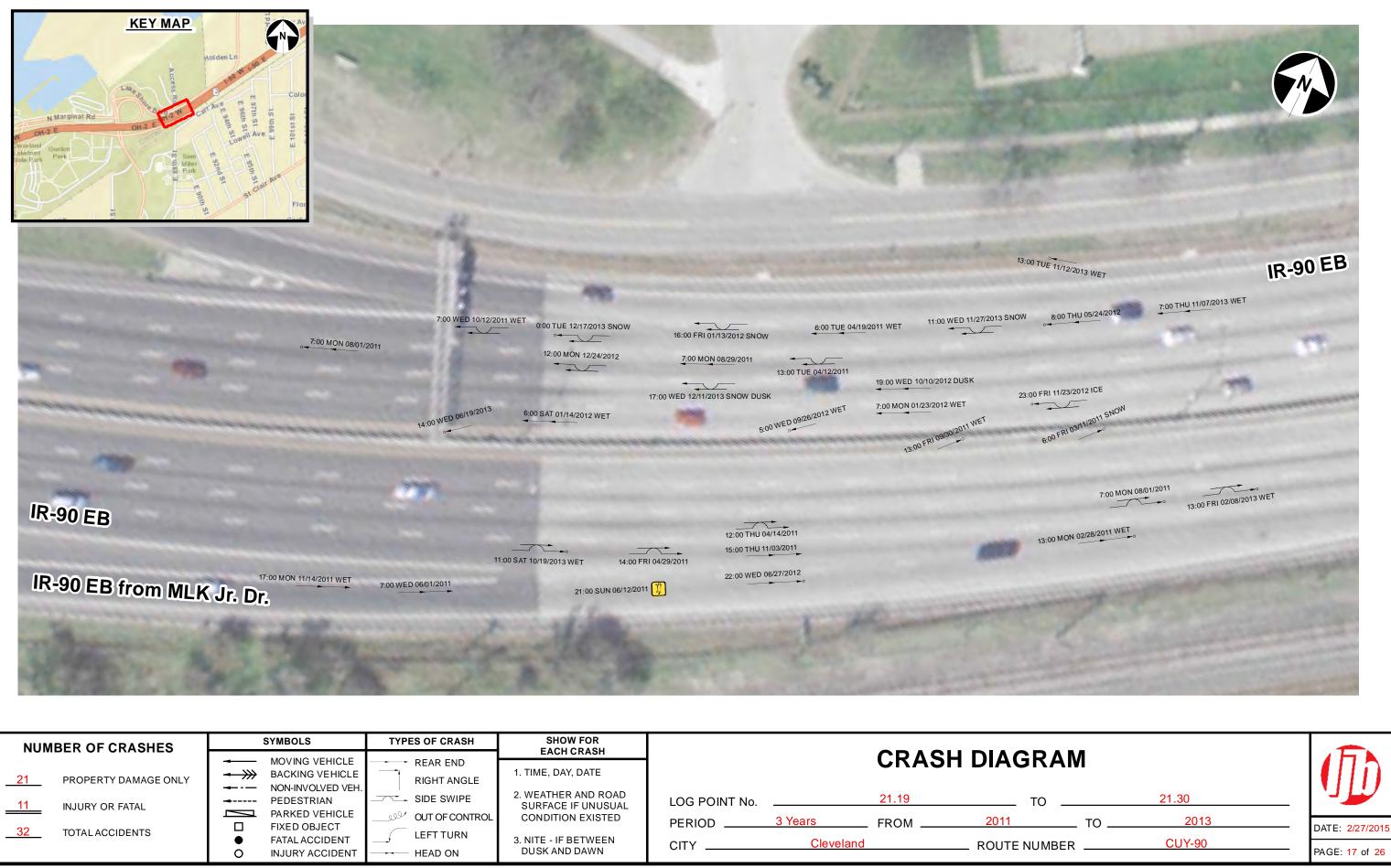

	ROPERTY DAMAGE ONLY URY OF FATAL
4 PROPERTY DAMAGE ONLY Image: Second se	PARKED VEHICLE OUT OF CONTROL CONDITION EXISTED PERIOD <u>3 Years</u> FROM <u>2011</u>


NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR				
19 PROPERTY DAMAGE ONLY 5 INJURY OR FATAL 24 TOTAL ACCIDENTS	 MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT NJURY ACCIDENT 	RIGHTANGLE	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN DUSK AND DAWN	LOG POINT No. PERIOD CITY	3 Years Cleveland	20.45 FROM	DIAGR


NUMBER	OF CRASHES		SYMBOLS	TYPES OF CRASH	SHOW FOR				
<u>3</u> PROF <u>3</u> INJUF	OF CRASHES PERTY DAMAGE ONLY RY OR FATAL		MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT	REAR END RIGHT ANGLE SIDE SWIPE OUT OF CONTROL	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN	LOG POINT No. PERIOD	3 Years Cleveland	20.57 FROM	TC
		õ	INJURY ACCIDENT	HEAD ON	DUSK AND DAWN	CITY	Cleveland		_ ROUTE NUI

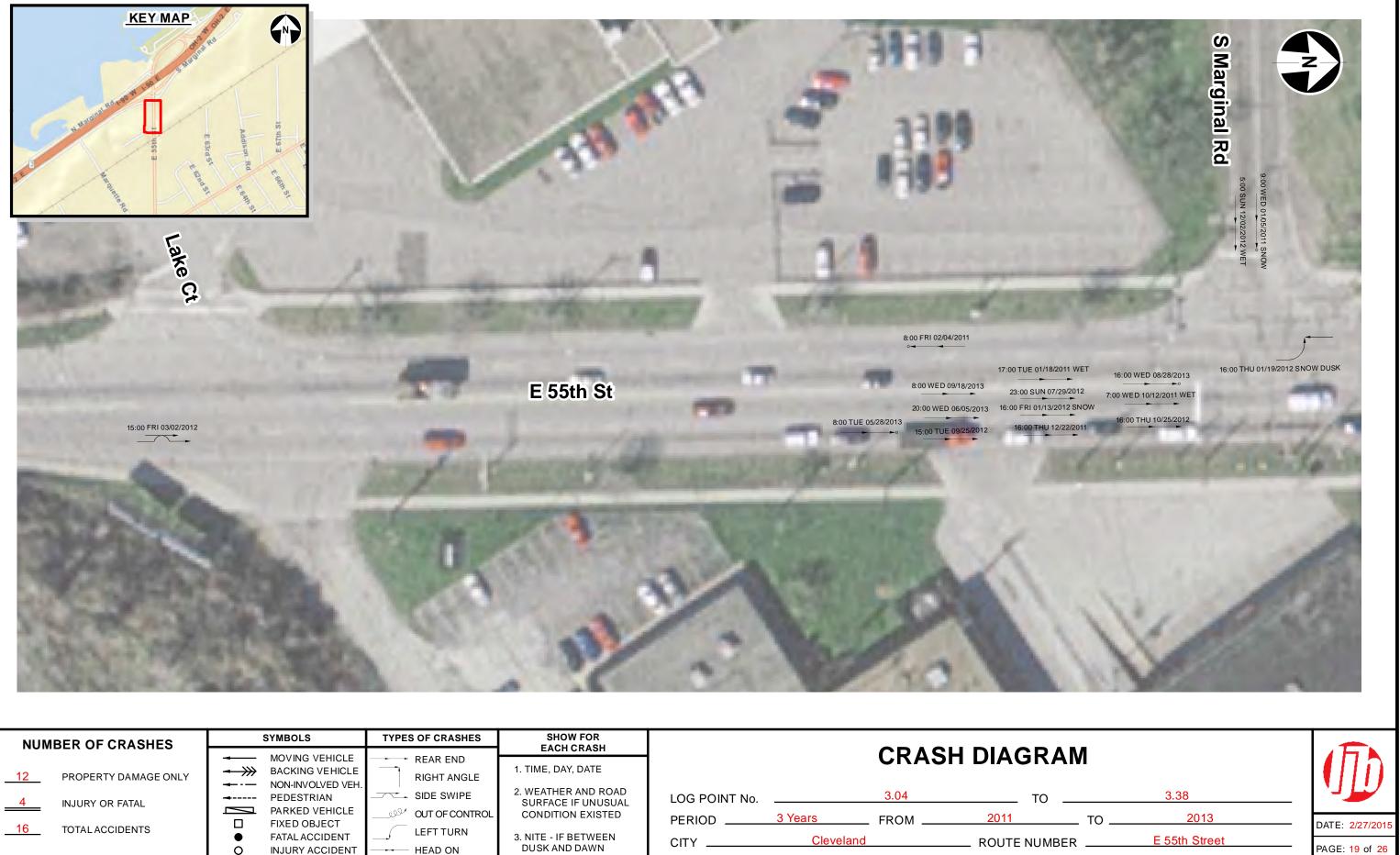

NUM	BER OF CRASHES		SYMBOLS	TYPES OF CRASH	SHOW FOR EACH CRASH				
			MOVING VEHICLE	REAR END	EACH CRASH			CRAS	H DIAGR
3	PROPERTY DAMAGE ONLY		BACKING VEHICLE	RIGHT ANGLE	1. TIME, DAY, DATE			UNAU	
	The ERT Brinner oner	-	NON-INVOLVED VEH.						
2	INJURY OR FATAL		PEDESTRIAN	SIDE SWIPE	2. WEATHER AND ROAD SURFACE IF UNUSUAL	LOG POINT No.		0.07	тс
	INJURT OR FATAL		PARKED VEHICLE	OUT OF CONTROL	CONDITION EXISTED	PERIOD	3 Years	FROM	2011
5	TOTAL ACCIDENTS		FIXED OBJECT			PERIOD	0 10013		2011
	TOTALAGOIDENTO	•	FATAL ACCIDENT	LEFT TURN	3. NITE - IF BETWEEN		Cleveland		
		0	INJURY ACCIDENT	HEAD ON	DUSK AND DAWN	UIII		•	

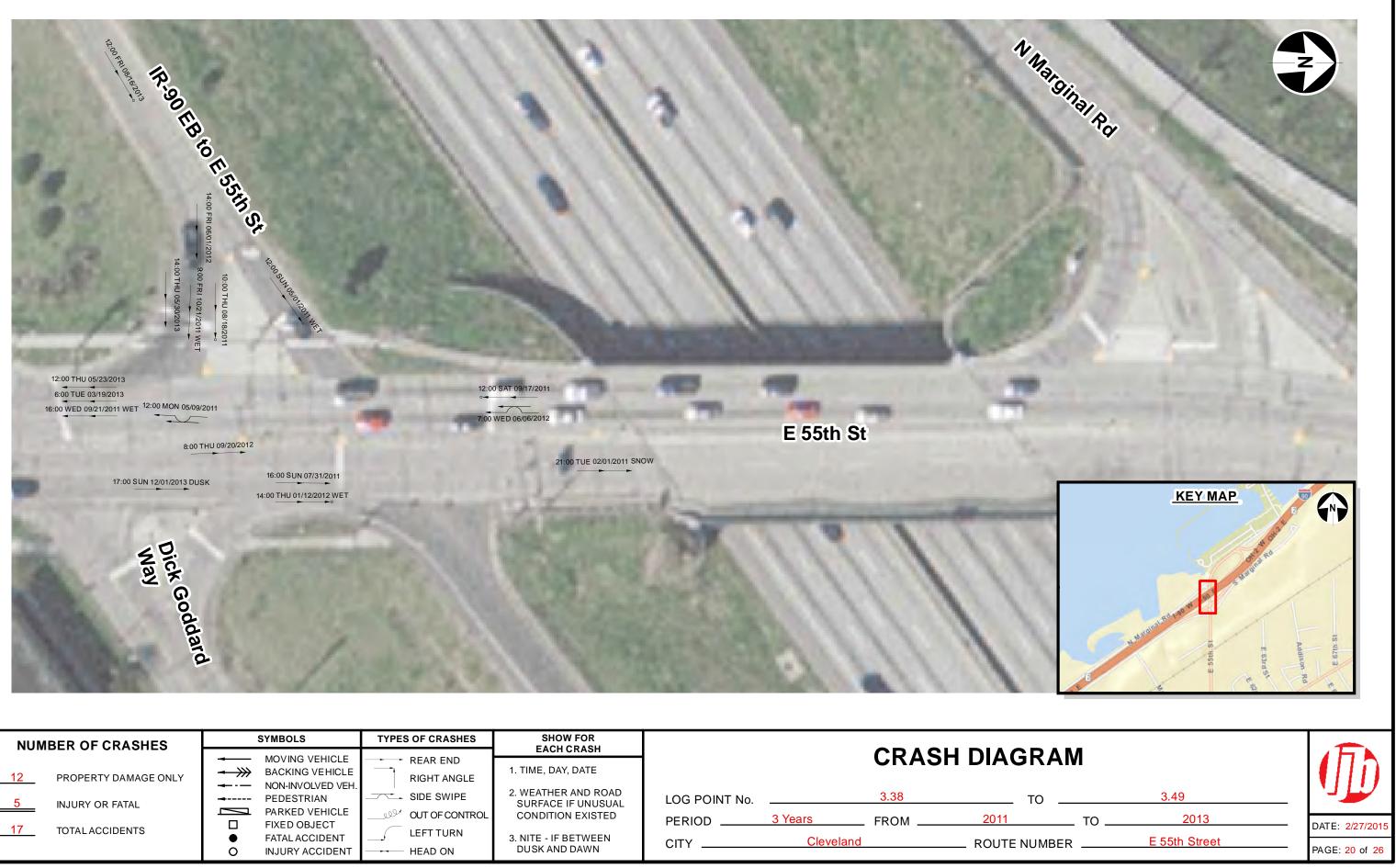

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR EACH CRASH				
6 PROPERTY DAMAGE ONLY	← MOVING VEHICLE ← → BACKING VEHICLE	REAR END	1. TIME, DAY, DATE			CRASH	
4 INJURY OR FATAL	← · · · NON-INVOLVED VEH. ← · · · · PEDESTRIAN PARKED VEHICLE FIXED OBJECT	SIDE SWIPE	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT №. PERIOD	3 Years	20.68 FROM	TO
<u>10</u> TOTAL ACCIDENTS	 FIXED OBJECT FATAL ACCIDENT O INJURY ACCIDENT 	LEFT TURN	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		ROUTE NUME


NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR				
21 PROPERTY DAMAGE ONLY 8 INJURY OR FATAL 29 TOTAL ACCIDENTS	 MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT NJURY ACCIDENT 	RIGHT ANGLE	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN DUSK AND DAWN	LOG POINT No. PERIOD CITY	3 Years Cleveland	20.82 - FROM	H DIAGRA TO TO ROUTE NUME

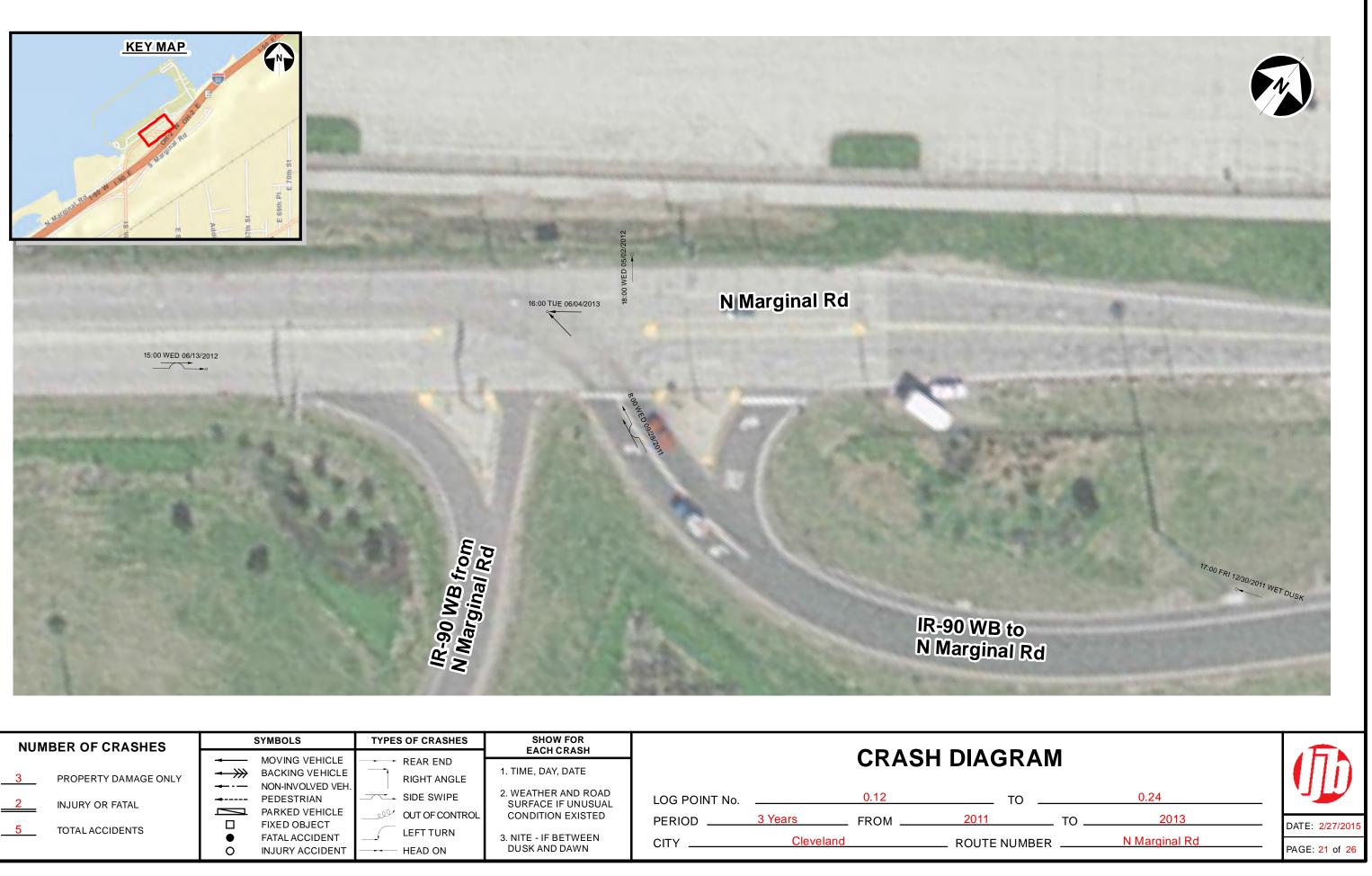
NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES	SHOW FOR				
7 PROPERTY DAMAGE ONLY 10 INJURY OR FATAL 17 TOTAL ACCIDENTS	 MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT NJURY ACCIDENT 	RIGHT ANGLE	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN DUSK AND DAWN	LOG POINT No. PERIOD CITY	3 Years Cleveland	20.93 FROM	DIAGRA TO 2011 ROUTE NUME

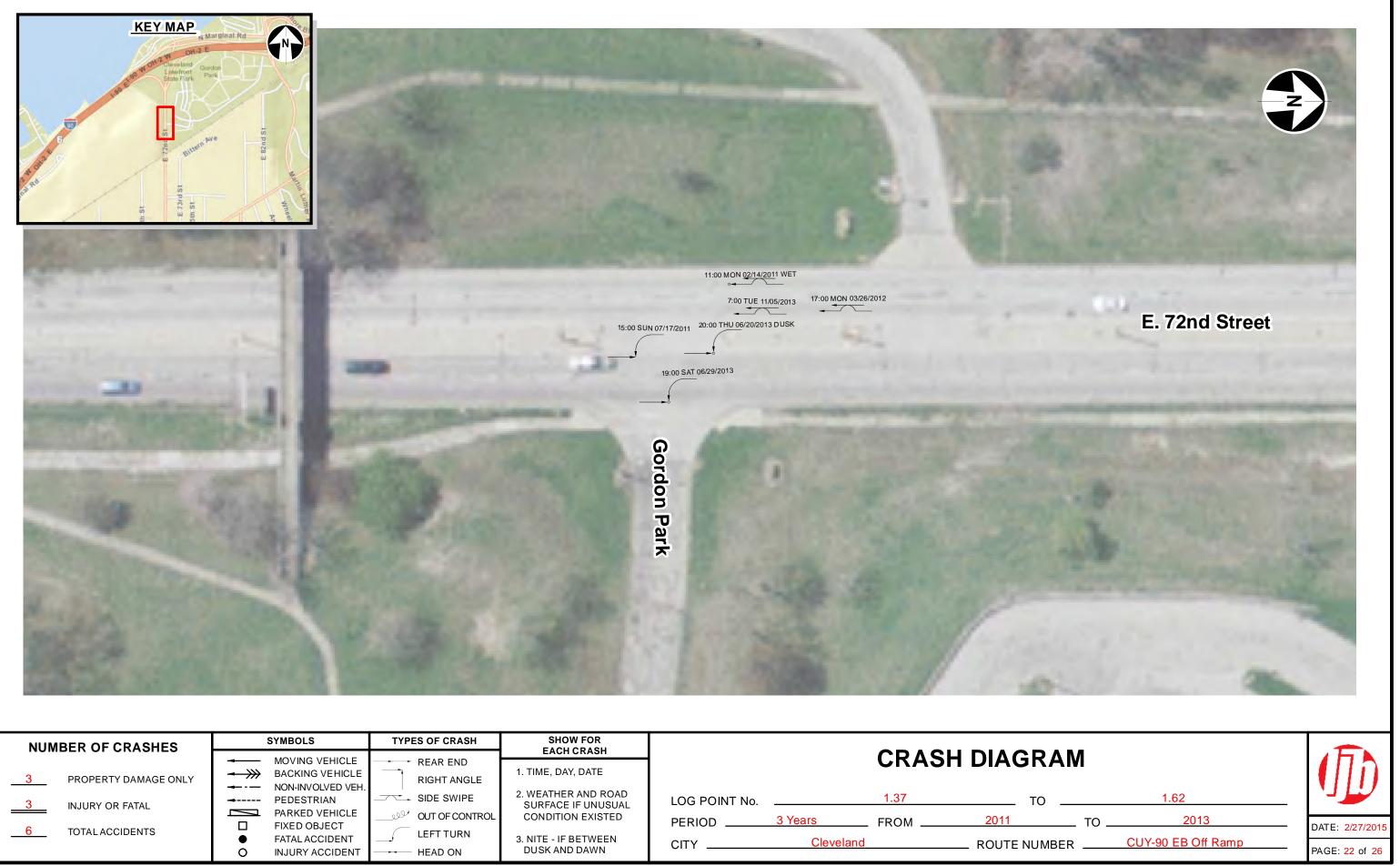
NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES	SHOW FOR				
16 PROPERTY DAMAGE ONLY	MOVING VEHICLE BACKING VEHICLE		EACH CRASH			CRASH	I DIAGRA
7 INJURY OR FATAL	NON-INVOLVED VEH	RIGHT ANGLE	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT №. PERIOD	3 Years	21.05 FROM	TO
23 TOTAL ACCIDENTS	 FIXED OBJECT FATAL ACCIDENT INJURY ACCIDENT 	LEFT TURN	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		ROUTE NUMB

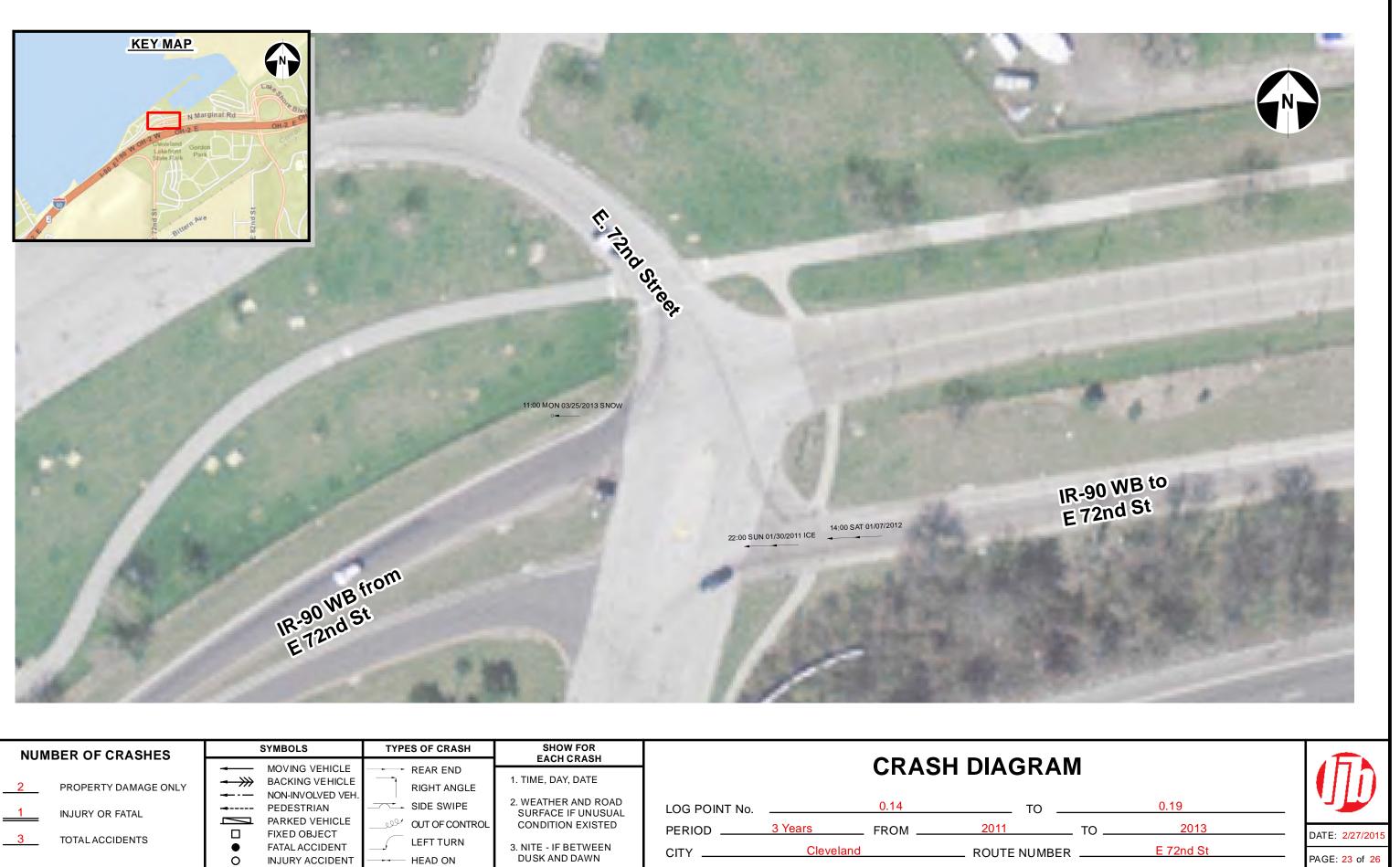

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR				
21 PROPERTY DAMAGE ONLY 11 INJURY OR FATAL 32 TOTAL ACCIDENTS	 MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT NJURY ACCIDENT 	RIGHT ANGLE	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN DUSK AND DAWN	LOG POINT No. PERIOD CITY	3 Years Cleveland	21.19 . FROM	1 DIAGR TO TO ROUTE NUME

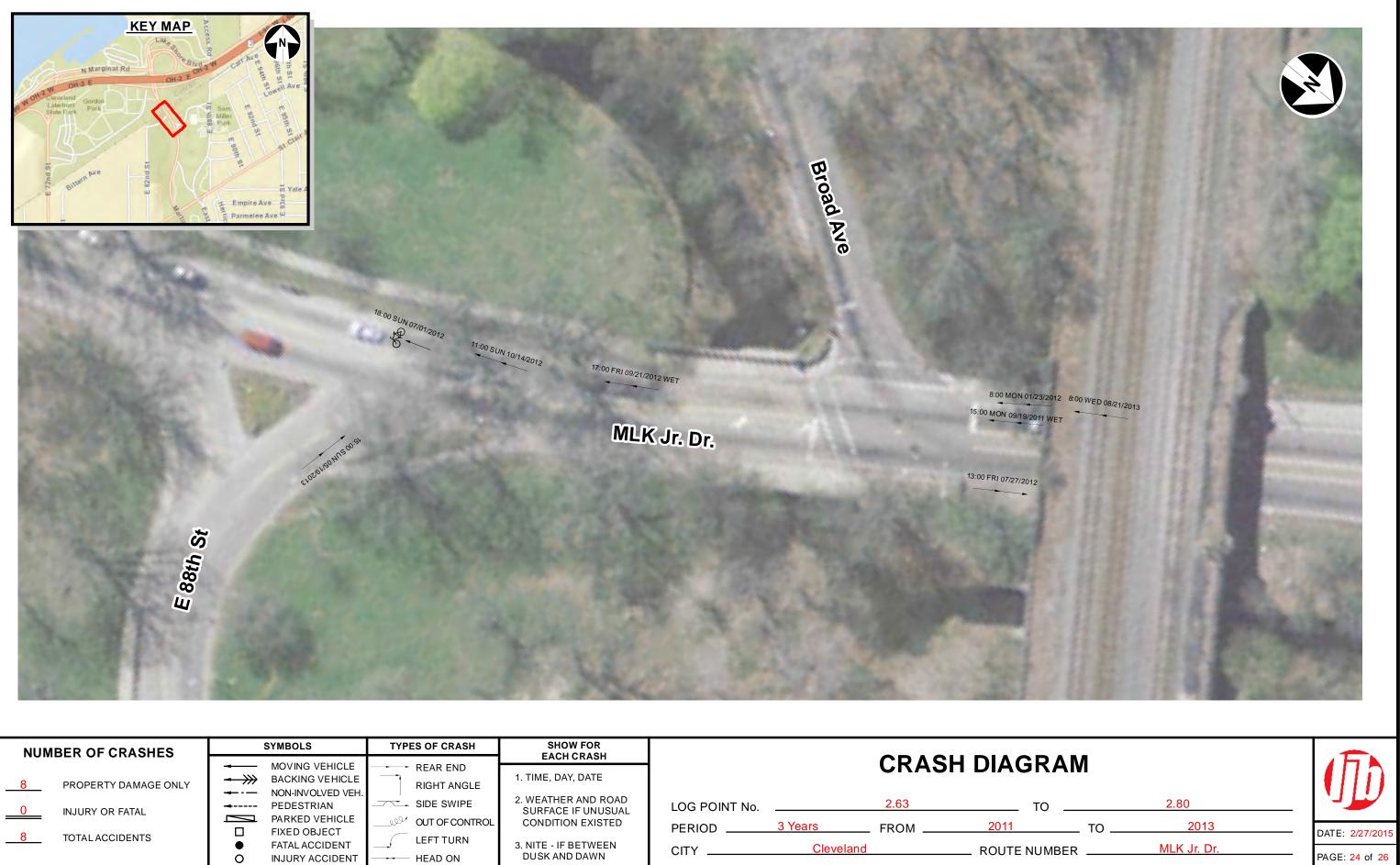

CUY-90

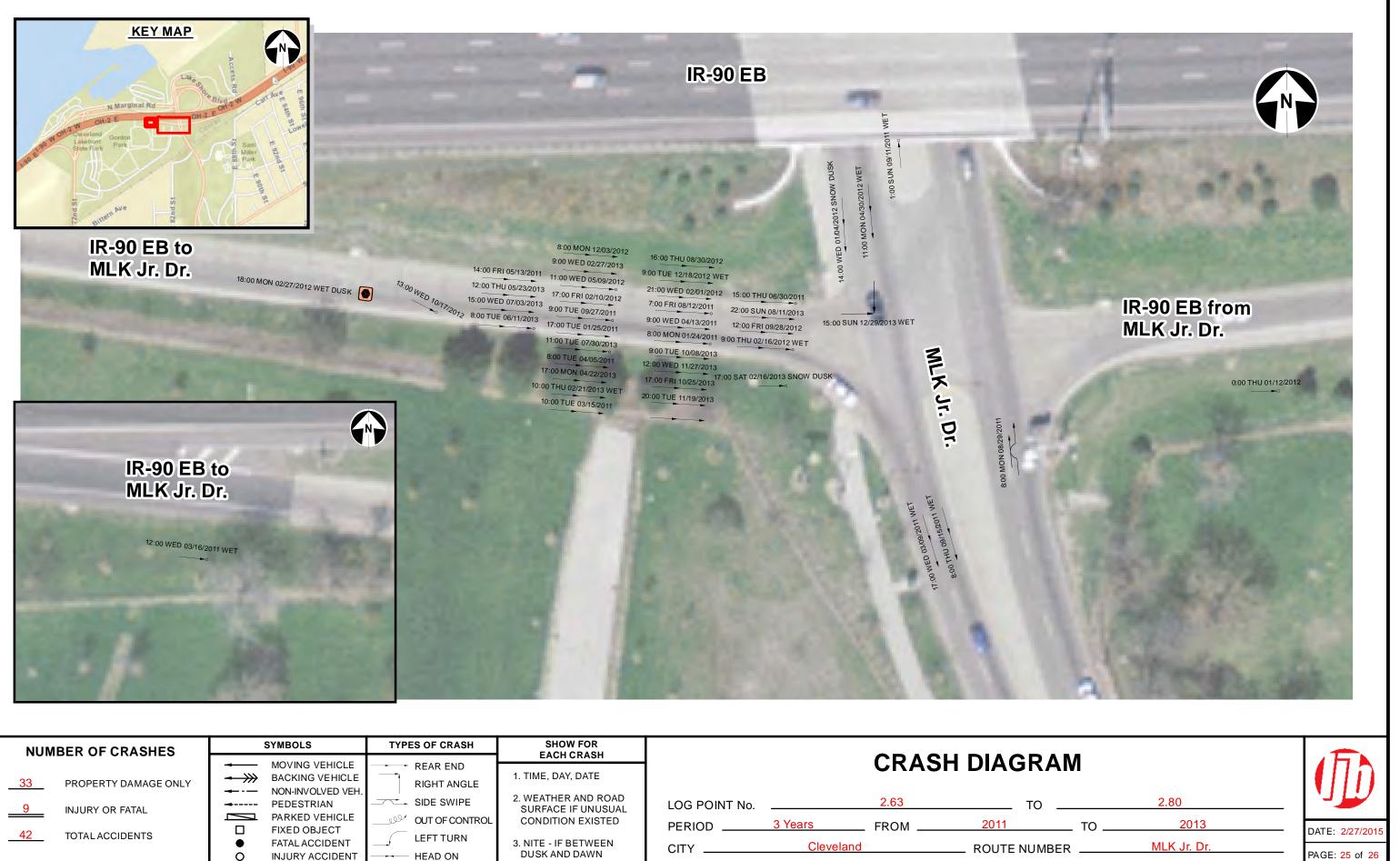
PAGE: 18 of 26

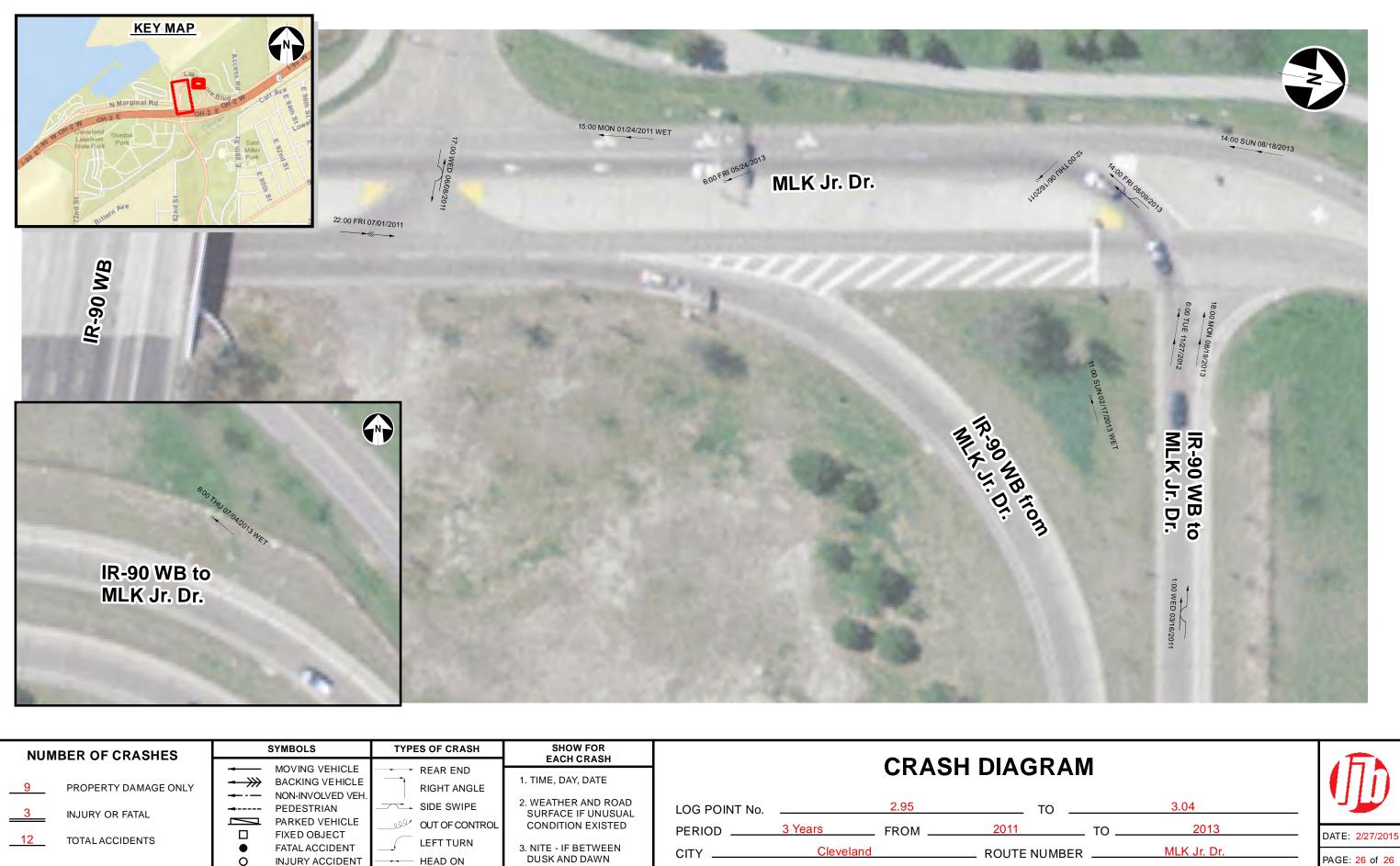

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES						_
PROPERTY DAMAGE ONLY	MOVING VEHICLE BACKING VEHICLE	REAR END	EACH CRASH			CRASH		Λ
0 INJURY OR FATAL 2 TOTAL ACCIDENTS	 NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT INJURY ACCIDENT 	SIDE SWIPE SIDE SWIPE OUT OF CONTROL LEFT TURN HEAD ON	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN DUSK AND DAWN	LOG POINT No. PERIOD CITY	3 Years Cleveland	21.30 FROM	TO 2011 ROUTE NUMBER	то


NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES	SHOW FOR EACH CRASH				
12 PROPERTY DAMAGE ONLY	MOVING VEHICLE	RIGHT ANGLE	1. TIME, DAY, DATE			CRASH	DIAGR
4 INJURY OR FATAL	← - NON-INVOLVED VEH. ← PEDESTRIAN PARKED VEHICLE EVED OD ISOT		2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT №. PERIOD	3 Years	3.04 FROM	TC 2011
<u>16</u> TOTAL ACCIDENTS	 FIXED OBJECT FATAL ACCIDENT INJURY ACCIDENT 	LEFT TURN	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		. ROUTE NUM


12 PROPERTY DAMAGE ONLY MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. REAR END RIGHT ANGLE 1. TIME, DAY, DATE 5 INJURY OR FATAL PEDESTRIAN PARKED VEHICLE FIXED OBJECT SIDE SWIPE FIXED OBJECT 1. TIME, DAY, DATE 17 TOTAL ACCIDENTS FIXED OBJECT FIXED OBJECT Image: Construct of the period of the p	NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES	SHOW FOR			
	12 PROPERTY DAMAGE ONLY 5 INJURY OR FATAL	BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT	RIGHT ANGLE SIDE SWIPE OUT OF CONTROL LEFT TURN	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN	PERIOD	3.38 _ FROM	то


NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASHES	SHOW FOR EACH CRASH				
3 PROPERTY DAMAGE ONLY	MOVING VEHICLE BACKING VEHICLE	REAR END	1. TIME, DAY, DATE			CRAS	H DIAGR
2 INJURY OR FATAL	NON-INVOLVED VEH PEDESTRIAN PARKED VEHICLE	SIDE SWIPE	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT №. PERIOD	3 Years	0.12	TO
5 TOTAL ACCIDENTS	 FIXED OBJECT FATAL ACCIDENT INJURY ACCIDENT 	LEFT TURN	3. NITE - IF BETWEEN DUSK AND DAWN		Cleveland		ROUTE NUM


NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR EACH CRASH				
	HOVING VEHICLE		1. TIME, DAY, DATE			CRASH	H DIAGR
3 PROPERTY DAMAGE ONLY 3 INJURY OR FATAL	NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE EIVED OD LEGT	RIGHT ANGLE	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT No. PERIOD	3 Years	1.37 FROM	TO 2011
6 TOTAL ACCIDENTS	 FIXED OBJECT FATAL ACCIDENT INJURY ACCIDENT 	LEFT TURN	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		ROUTE NUM


NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR EACH CRASH				
2 PROPERTY DAMAGE ONLY	MOVING VEHICLE BACKING VEHICLE	REAR END	1. TIME, DAY, DATE			CRASH	I DIAGR
INJURY OR FATAL	NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE	SIDE SWIPE	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT No. PERIOD	3 Years	0.14	TO
<u>3</u> TOTAL ACCIDENTS	 FIXED OBJECT FATAL ACCIDENT INJURY ACCIDENT 	LEFT TURN	3. NITE - IF BETWEEN DUSK AND DAWN		Cleveland		ROUTE NUME

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR				
8 PROPERTY DAMAGE ONLY 0 INJURY OR FATAL 8 TOTAL ACCIDENTS	 MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL ACCIDENT NJURY ACCIDENT 	RIGHTANGLE	EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED 3. NITE - IF BETWEEN DUSK AND DAWN	LOG POINT No. PERIOD CITY	3 Years Cleveland	2.63 FROM	DIAGRA TO TO

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR EACH CRASH				
	MOVING VEHICLE BACKING VEHICLE		1. TIME, DAY, DATE			CRASH	I DIAGR
33 PROPERTY DAMAGE ONLY	NON-INVOLVED VEH.	RIGHT ANGLE	2. WEATHER AND ROAD	LOG POINT No.		2.63	то
9 INJURY OR FATAL	PARKED VEHICLE		SURFACE IF UNUSUAL CONDITION EXISTED	PERIOD	3 Years	FROM	2011
42 TOTAL ACCIDENTS	FATAL ACCIDENTINJURY ACCIDENT	LEFT TURN HEAD ON	3. NITE - IF BETWEEN DUSK AND DAWN	CITY	Cleveland		ROUTE NUME

NUMBER OF CRASHES	SYMBOLS	TYPES OF CRASH	SHOW FOR EACH CRASH				
9 PROPERTY DAMAGE ONLY	MOVING VEHICLE BACKING VEHICLE	REAR END	1. TIME, DAY, DATE			CRASH	I DIAGR
3 INJURY OR FATAL	NON-INVOLVED VEH PEDESTRIAN PARKED VEHICLE	SIDE SWIPE	2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED	LOG POINT No.	3 Years	2.95	TO
12 TOTAL ACCIDENTS	 FIXED OBJECT FATAL ACCIDENT INJURY ACCIDENT 	LEFT TURN	3. NITE - IF BETWEEN DUSK AND DAWN	PERIOD CITY	Cleveland	FROM	ROUTE NUME

TRAFFIC CRASH REPORT	006657
SAFETY LICCAL INFOCMATION	LOCAL REPORT NUMBER CASH SEVERITY HIT/SKIP
	NUMBER OF UNTINEROR
	DIVISION OF POLICE 05 UNTS 01 00 - UNKNOWN CRASH DATE* TIME OF CRASH DAY OF WEEK
	0151310121011131 [1101414]
DEGREES / MNUTES / SECONDS LATITUDE LONGITUDE / // // O / // //	
	4 1],[5 3 4 4 3 8] [8 1],[6 4 6 0 5 8] e or milepost ²
Image: Divided in the second base of the second basecond base of the second base of the second base of t	CR - CIRCLE HE - HEIGHTS MP - MILEPOST PL - PLACE ST - STREET WA - WAY IE CT - COURT HW - HIGHWAY PK - PARKWAY RD - ROAD TE - TERRACE VARD DR - DRIVE LA - LANE PI - PIKE SO - SQUARE TL - TRAIL
	HMM LOCATION RCAD TYPE? US - US ROUTE (INC. TUTUNPIKE) CR - NUMBERED COUNTY ROUTE US - US ROUTE TR - NUMBER TOWNSHIP ROUTE SR - STATE ROUTE
	EFERENCE NAME (ROAD, MILEPOST, HOUSE #
	LWAY GRACE CROSSING ARED-USE PATHS OR TRAILS KNOWN LWAY GRACE CROSSING RELATED LOCATION OF FIRST HARMFUL EVENT 1 - ON ROADWAY 5 - ON GORE 2 - ON SHOULDER 6 - OUTSIDE TRAFFICWAY 3 - IN MEDIAN 9 - UNKNOWN 4 - ON ROADSIDE
ROAD CONTOUR 1 - STRAIGHT LEVEL 4 - CURVE GRACE 2 - STRAIGHT GRADE 9 - UNKNOWN 3 - CURVE LEVEL 9 - UNKNOWN COLD 1 CONDITIONS PRIMARY SECONDARY 0 - URVE 0 - URVE 0 - UNKNOWN 0 - URVE 0 - UNKNOWN 0 - URVE 0 - URVE	05 - SAND, MUD, DIRT, OIL, GRAVEL 09 - RUT, HOLES, BUMPS, UNEVEN PAVEMENT* 06 - WATER (STANDING, MOVING) 10 - OTHER 07 - SLUSH 09 - UNKNOWN 08 - DEBRIS* * SECONDARY CONDITION ONLY
MANNER OF CRASH COLLISION/IMPACT 6 1 - NOT COLLISION BETWEEN Two MOTOR VEHICLES IN TRANSPORT 4 - REAR-TO-REAR 7 - SIDESWIPE, SAME DIRECTION 9 - UNKNOWN	WEATHER 1 - CLEAR 4 - RAIN 7 - SEVERE CROSSWINDS 2 - CLOUDY 5 - SLEET, HAIL 8 - BLOWING SAND, SOL, DIRT, SNOW 3 - FOG, SMOG, SMOKE 0 - SNOW 9 - OTHER/UNKNOWN
ROAD SURFACE 1 - CONCRETE 4 - SLAG, GRAVEL LIGHT CONDITIONS 2 1 - CONCRETE 4 - SLAG, GRAVEL Image: Constraint of the structure of the struct	5 - DARK - ROADWAY NOT LIGHTED 9 - UNKNOWN 0 - DARK - UNKNOWN ROADWAY LIGHTING 7 - GLARE* ED ROADWAY 8 - OTHER • SECONDARY CONDITION ONLY SECONDARY CONDITION ONLY SECONDARY CONDITION ONLY SECONDARY CONDITION ONLY SECONDARY CONDITION ONLY
WORK WORKERS PRESENT TYPE OF WORK ZONE ZDNE LAW ENFORCEMENT PRESENT (OFFICER/VEHICLE) 1 - LANE CLOSURE 4 - INTERMITTEN LW ENFORCEMENT PRESENT (OFFICER/VEHICLE) 1 - LANE CLOSURE 5 - OTHER LW ENFORCEMENT PRESENT (VEHICLE ONLY) 3 - WORK ON SMOULDER OR MEDIAN	IT OR MOVING WORK IDENTIFY AREA LOCATION OF CRASH IN WORK ZONE I - BEFORE THE FIRST WORK ZONE WARNING SIGN I - BEFORE THE FIRST WORK ZONE WARNING SIGN I - BEFORE THE FIRST WORK ZONE I -
NARRATIVE Unit 1 is being operated east on Interstate 90 (eastbound) in lane 1.	Diagram
He comes upon Slowing/stopped traffic and swerves off to the right. It comes	B
into contact with unit 2 (sideswipe) that was stopped in lane 3. Unit 1 is now	All shoulder 90 E. 15
traveling in a southeast direction and strikes unit 3 (pedestrian) who is standing/walking on roadway(with in lane 3). Unit 1 attempts to correct by	all te
steering to the left and collides with unit 4 that was also stopped in lane 3.	
The impact from this collision projects unit 4 forward, and causes it to come	THE WILL
into contact with Unit 5 (pedestrian) before it veers off the right side of the	1 1 A B A A A A A A A A A A A A A A A A
roadway up a grassy embankment and collide with a chain link fence. Unit 1	Nº St
now traveling in a northeasterly direction collides with the median wall	unit and set in.
breaking off two sections before it rolls back to final rest.	unit 1 Stout det RP
REPORT TAKEN BY	stite RP
DATE CRASH REPORTED TIME CRASH REPORTED DISPATCH TIME ARRIVAL	L TIME TIME CLEARED OTHER INVESTIGATION THE TOTAL MINUTES
	1 0 8] 1 3 0 5] 5 4 0 6 5 5 R'S BADGE NUMBER CHECKED BY
HSY7001 OH1 (REV 01/12)	662 AM 17400 PAGE 1 OF 9

20134000572

	<u> Ш Unit</u>	•	Hardel Annual				GT111	
1	OWNER NAME: LAST, FI	RST, MIDDLE (🔲 SAME AS DRI	IVER)	OWNER PHONE NUM	Be r - Inc . Area co	DDE (SAME AS DRIVER)	DAMAGE SCALE	DAMAGED AREA
		Najjar, Sher	reen	2	2165010	880	4	FRONT
	S: CITY, STATE, ZIP (X S	,	Street Westlake,	Ohio 4414	5	1	1 - NONE 2 - MINOR	
	X25	57738		ISIOIYE			3 - FUNCTIONAL	08 10 04
VEHICLE YEAR		Ford		ursion	VEHCLE OWED BY	black	4 - DISABLING	07 06 05
			POLICY NUMBER			ir/L2/8774	9 - UNKNOWN	
	y							
US DOT	No. 1 1-L 2-1 3-N	EIGHT GVWR/GCWR ESS THAN OR EQUAL TO 10k LBS 10,001 TO 28,000 LBS. MORE THAN 28,000 LBS.	CARGO BODY TYFE 01 - NO CARGO BODY 22 - BUSVAN (0-15 SF 03 - BUS (16+ SEATS, 04 - VEHCLE TOWING 05 - LOGGING 00 - INTERMODAL CON	INC DRIVER) ANOTHER VEHICLE	00 - POLE 10 - CARGO TAN 11 - FLAT BED 12 - DUMP 13 - CONCRETE M 14 - AUTO TRANSF	IXER 4 2- TWO-WA	Y, NOT DIVIDED Y, NOT DIVIDED, CONTI	NUCUS LEFT TURN LANE STED (PAINTED OR GRASS > 4 FL) MEDIAN KEDIAN BARRIER
		LEASED	07 - CARGO VANIENCL 08 - GRAIN, CHIPS, G		15 - GARBAGE/RE 00 - OTHER/UNKN		r	
01 02 02 04 05 06 07 07 08 00 01 01 11 11 12	CATION PROR TO IMPACT INTERSECTION - MARKED INTERSECTION - OTHER INTERSECTION - OTHER MIDBLOCK - MARKED CRO TRAVEL LANE - OTHER LO BICYCLE LANE - SHOULDER/ROADSIDE - SIDEWALK MEDIAVCROSSING ISLAN DRIVEWAY ACCESS - SHARED-USE PATH OR TF INON TRAFFICWAY AREA OTHER/UNKNOWN	ISWALK I - PERSONAL 2 - COMMERCIAL 3 - GOVERNMENT IN EMERGENCY	UG6 01 - SUB-COM 02 - COMPAC 09 - UNKNOWN 03 - MID SIZE 07 HIT / SKIP 04 - FULL SIZ 05 - MINIVAN 06 - SPORT U 07 - PICKUP 08 - VAN 09 - MOTORC 10 - MOTORC 11 - SNOWMC	T E TILITY VEHICLE YOLE ED BICYCLE	13 - SINGLE 14 - SINGLE 16 - SINGLE 16 - TRUCK/ 17 - TRACTO 18 - TRACTO 19 - TRACTO 20 - OTHER	TRUCKS OR COMBO UNITS UNIT TRUCKS OR VAN 2 AX UNIT TRUCK; 3+ AXLES UNIT TRUCK; 3+ AXLES UNIT TRUCK; / TRALER OR/DOUBLE OR/TRIPLES MED/HEAVY VEHICLE AS HM PLACARD	LE, 6 TIRES 21 - 6 22 - 8 NON-MC 23 - A 24 - A 25 - 80 26 - PE	WIJMO (9 OR MORE INCLUDINS DRIVER) US/VAN (9-15 SEATS, INC DRIVER US (16+ SEATS, INC DRIVER TRORST NIMAL WITH RUDER UMAL WITH BUGGY, WAGON, SURREY CYCLEPEDACYCLIST EDESTRUAYSKATER THER NON-MOTORIST
01	01-NONE 02-TAX 03-RENTAL TRUCK (OVER 04-BUS - SCHCOL (PUELO 05-BUS - SCHCOL (PUELO 05-BUS - CHARTER 07-BUS - SHUTTLE 06-BUS - OTHER 07-BUS - STHER		RNMENT		01 - NONE	IDE 11 - UNDERCARR EAR 12 - TOTAL (ALL A ENTER 08 - REAR CENTE	IAGE REAS)	WN 3 1 - NON- CONTACT 2 - NON-COLLISION 3 - STRIKING 4 - STRUCK 5 - STRIKING/STRUCK 0 - UNKNOWN
	MOTORIST 01 - STRAIGHT A H 02 - BACKING 03 - CHANGING LAI 04 - OVERTAKING# 05 - MAKING RIGHT 06 - MAKING LEFT	08 - ENTERING TR NES 09 - LEAVING TRAJ PASSING 10 - PARKED I TURN 11 - SLOWING OR	RAFFIC LANE 14 - OTHER IFFIC LANE STOPPED IN TRAFFIC	IATING A CURVE MOTORIST ACTION	16 - WALKING, RI 17 - WORKING 18 - PUSHING VE	DR CROSSING SPECIFIED L UNNING, JOGGING, PLAYIN HICLE NG OR LEAVING VEHICLE		OTHER NON -MOTORIST ACTION
CONTRIBUTING C PRIMARY 09 SECONDARY 17 90 - UNKNOWN	MOTORIST 01 - NONE 02 - FAILURE TO Y 03 - RAN RED LIG 04 - RAN STOP SK 05 - EXCEEDED SI 06 - UNSAFE SPEE 07 - IMPROPER TL 08 - LEFT OF CENT	/1ELD 12 - IMP HT 13 - STC SN 14 - OPE PEED LIMIT 15 - SWI ED 16 - WRG IRN 17 - FALL TER 18 - VISI DO CLOSEL Y/ACDA 19 - OPE INE CHANGE 20 - LOA	PROPER BACKING PROPER START FROM PARKED POS OPPED OR PARKED ILLEGALLY ERATING VEHICLE IN NEGLIGENT M IERVING TO AVOID (DUE TO EXTERN IONG SIDEAWRONG WAY LURE TO CONTROL UNE TO CONTROL ION OBSTRUCTION ERATING DEFECTIVE EQUIPMENT AO SHIFTING/FALLINGSPILLING HER IMPROPER ACTION	181 223 244 244 244 244 244 244 245 245 245 245	2 - NONE 3 - IMPROPER CR 1 - DARTING 5 - LYING AND/OR 3 - FAILURE TO YI 7 - NOT VISIBLE (C 8 - INATTENTIVE 9 - FAILURE TO OB 7 SIGNALS/OFFI 0 - WRONG SIDE C	ILLEGALLY IN ROADWAY IELD RIGHT OF WAY DARK CLOTHING) BEY TRAFFIC SIGNS ICER	02 - 1 03 04 - 1 05 - 3 06 - 08 - 08 - 08 - 09 - 1 10 - 1	TS TURN SIGNALS HEAD LAMPS TAIL LAMPS BRAKES BRAKES STEERING TIRE BLOWOUT WORN OR SLICK TIRES TRAILER EOUIPMENT DEFECTIVE MOTOR TROUBLE DISABLED FROM PRIOR ACCIDENT OTHER DEFECTS
SEQUENCE OF EX 1 2 1 2 FIRST HARMFUL EVENT	VENTS 14 ³ 21 MOST HARMFUL EVENT	435 5 00 - UNKNO	6 NON-COLLISION EX 01 - OVERTURIVROLL 02 - FIREEXFLOSIOL 03 - IMMERSION 04 - JACKKNIFE 05 - CARGOEQUIPME	OVER C	08 - EQUIPMENT FA (BLOANTIRE, BR 17 - SEPARATION O 18 - RAN OFF ROAL 39 - RAN OFF ROAL 30 - RAN OFF ROAL	WEFAILURE, ETC) 11 - CRC FUNITS OPP DRIGHT 12 - DOV	DSS MEDIAN DSS CENTER LINE CGITE DIRECTION OF 1 VNHILL RUNAWAY ER NON-COLLISION	IFAVEL
COLLISIDN WITH 14 - PEDESTRIA 15 - PEDALCYC 10 - RAILWAY V 17 - ANIMAL - FA 18 - ANIMAL - DI 19 - ANIMAL - DI	<u>H PERSON, VEHICLE OR (</u> N LE EHICLE (TRAIN ENGINE) ARM EER	21 - PARKED MOTOR VEHICLE 22 - WORK ZONE MAINTENANC	CE EQUIPMENT 27 - BRIDGE PIER OR FTINS CARGO 26 - BRIDGE PARAPET ITION BY A 29 - BRIDGE RAIL 30 - GUARDRAIL FAC	TORICRASH CUSHION AD STRUCTURE ABUTIMENT F E	34 - MEDIAN GUAR 35 - MEDIAN CONC 30 - MEDIAN OTHE 37 - TRAFFIC SIGN 38 - OVERHEAD SI 39 - LIGHT/LUMINA 40 - UTHLITY POLI	RDRAIL BARRIER 0 CRETE BARRIER 42 · C ER BARRIER 43 · C ISOST 44 · D IGN POST 45 · E VRIES SUPPORT 46 · F		42 - CULVERT 49 - FIRE HYDRANT 50 - WORK ZONE MAINTENANCE EQUIPMENT 51 - WALL, BUILDING, TUNNEL 52 - OTHER FIXED OBJECT
	POSTED SPEED	TRAFFIC CONTROL 01 - NO CONTRO 02 - STOP SIGN 03 - YIELD SIGN 04 - TRAFFIC SI 05 - TRAFFIC FL 06 - SCHOOL ZO	I 08 - RAILROAD FLASHER N 09 - RAILROAD GATES IGNAL 10 - CONSTRUCTION BA LASHERS 11 - PERSON (FLAGGER,	S 14 - WALK/ 15 - OTHEI RRICADE 16 - NOT R OFFICER)			1 - NORTH 2 - SOUTH 3 - EAST 4 - WEST	5-NORTHEAST 0-UNKNOWN 6-NORTHWEST 7-SOUTHEAST 8-SOUTHWEST PAGE 2 OF 9

HSY8304 OH1U (Rev 01/12)

ОНЮ								LOCAL REPORT	NUMBER		
BOUCATION - BARNES - PROTECTION	Unit							-Od	0671		
1	VER NAME: LAST, FIRST, MIDE				OWNER PHONE	NUMBER - INC	. AREA CODE	e (🔲 Same as drive.	R) DAMAGE SCALE	DAMAGED AREA FROM	
02		oury, Earl,	<u>V.</u>						4		٦
OWNER ADDRESS: CI	IY, STATE, ZIP (□ SAME AS D 9503 □		enue	e Cleveland	Ohio 4	4103			I - NONE	09	03
LP STATE LICENSE	PLATE NUMBER			E IDENTIFICATION NUMBER	, onio i			# OCCUPAN	TS 2 - MINOR		7
	ETH 940)4		G[8]Z[H[5]5	9 3 R	Z 2 5	www.k.		3 - FUNCTIONAL	08	04
		turn		VEHICLE MODEL			VEHICLECC	white	4 - DISABLING	07 06	05
PROOF OF INS	URANCE COMPANY		POL	ICY NUMBER		TOWED BY		/L2/8775	9 - UNKNOWN		
CARRIER NAME, ADDRES	SS, CITY, STATE, ZIP		L						CARRIERPHC	NE-INCLUCE AREA CODE	
US DOT	VEHICLE WEIGHT GV		CARGO BO	DY TYPE		9U5 09.PO	1 E	TRAFFICWAY DES	CRIPTION		
HM PLACARD ID No.	2 - 10,001 TO :		01	02 - BUS/VAN (0-15 SEA 03 - BUS (16+ SEATS, M	TS, INC DRIVER)		RGO TANK	4 2. TWO		VTINUOUS LEFT TURN LANE	
	3 - MORE THA	14 26,000 L8S.		01 - VEHICLE TOWING A 05 - LOGGING		12 - DU		∃R 4-1WO-	way, Divided, Positiv	ECTED (PAINTED OR GRASS > 4 Ft.) I E MÉDIAN BARRIER	MEDIAN
HM CLASS	HAZARDOUS N RELEASED	aterial		06 - INTERMODAL CONT 07 - CARGO VANJENCLO	SED BOX	15 - GAF	O TRANSPOR	JSE	WAY TRAFFICWAY		
NON-MOTORIST LOCATIO	IN PRIOR TO IMPACT	TYPE OF USE					ERVUNKINOV	<u>" </u>			
02 - INTE	RECTION - MARKED CROSSWAL RECTION - NO CROSSWALK	× 1	0	3 01 - SUB-COMF		13	- SINGLE UN	NUCKS OR COMBO UN	AXLE, 6 TIRES 21 -	ANUMO (9 OR MORE INCLUDING DF BUSIVAN (9-15 SEATS, INC DRI	
04 - MIDE	RSECTION - OTHER BLOCK - MARKED CROSSWALK	1 - PERSONAL		02 - COMPACT NKNOWN 03 - MID SIZE T / SKIP 04 - FULL SIZE		15	- SINGLE UN	NIT TRUCK; 3+ AXLES		BUS (16+ SEATS, INC DRIVER MOTORIST	
06 - BIC	VELLANE - OTHER LOCATION YOLE LANE ULDER/ROADSIDE	2 - COMMERCIAL 3 - GOVERNMENT	OKHI	T / SKIP 04 - FULL SIZE 05 - MINIVAN 06 - SPORT UT	IL ITY VEHICLE	17		VACTOR (BOBTAIL) /SEMI-TRAILER /DOUBLE	24 -	ANIMAL WITH RIDER ANIMAL WITH BUGGY, WAGON, SU	URREY
09 - SID			1	07 - PICKUP 08 - VAN		19	- TRACTOR		26 -	BICYCLE/PEDACYCLIST PEDESTRIAN/SKATER OTHER NON-MOTORIST	
	10 - DRIVEWAY ACCESS 09 - MOTORCYCLE 11 - SHARED-USE PATH OR TRAIL RESPONSE 10 - MOTORIZED BICYCLE									UTHER NON-NO TORIS)	
	12 - NON-TRAFFICWAY AREA 09 - OTHERUNKNOWN 12 - OTHERUNKNOWN 12 - OTHERUNKNOWN 13 - SNOWMOBILE / ATV 14 - SNOWMOBILE / ATV 14 - SNOWMOBILE / ATV 15 - OTHERUNKNOWN 12 - OTHERUNKNOWN 12 - OTHERUNKNOWN										
[NONE TAXI	00 - AMEULANCE 10 - FIRE		17 - FARM VEHICLE 18 - FARM EOUIPMENT			NONE	08 - LEFT SIDE			
[04-	RENTAL TRUCK (OVER 10k LBS) BUS - SCHOOL (PUBLIC OR PRIVA	'	TENANCE	20 - GOLF CART		<u> </u>	RIGHT FRO		VINDOWS	4 2 · NDN-COLLISI 3 · STRIKING	ION
08-	BUS - TRANSIT BUS - CHARTER BUS - SHUTTLE	13 - POLICE 14 - PUBLIC UTILITY 15 - OTI ED OCUEDI		21 - TRAIN 22 - Other (Explain in Nat		05 -	RIGHT REA REAR CENT	R 12 - TOTAL (AL	LAREAS)	4 - STRUCK 5 - STRIKING/STI 9 - UNKNOWN	RUCK
	BUS - SHUTTLE BUS - OTHER	15 - OTHER GOVER 16 - CONSTRUCTION					LEFT REAR				
	MOTORIST 01 - STRAIGHT A HEAD	07 - MAKING U-TUR	N	13 - NEGOTIA	TING A CURVE	NON-MO 15 - ENT		CROSSING SPECIFIE	D LOCATION 2	- OTHER NON -MOTORIST ACT	
	02 - BACKING 03 - CHANGING LANES	08 - ENTERING TRA 09 - LEAVING TRAFI	FFIC LAN	E 14 - OTHER N	OTORIST ACTIC		LKING, RUN	INING, JOGGING, PLA			
88 - 011010111	04 - OVERTAKING/PASSING 05 - MAKING RIGHT TURN	10 - PARKED 11 - SLOWING OR S	TOPPED	IN TRAFFIC		19 - APP		CLE OR LEAVING VEHICE	E		
CONTRIBUTING CIRCI	06 - MAKING LEFT TURN	12 - DRIVERLESS				20 - STA	NDING		VEHICLE DEFI		
PRIMARY	MOTORIST					NON-MOTO			01	- TURN SIGNALS - HEAD LAMPS	
13	01 - NONE 02 - FAILURE TO YIELD 03 - RAN RED LIGHT	12 - IMPR		CKING ART FROM PARKED POSIT PARKED ILLEGALLY	FION		OPER CROS	SING		- TAIL LAMPS - BRAKES	
SECONDARY	04 - RAN STOP SIGN 05 - EXCEEDED SPEED LIM	14 - OPE	RATING VE	EHICLE IN NEGLIGENT MA			AND/OR IL	LEGALLY IN ROAOWA	Y 05	- STEERING - TIRE BLOWOUT	
	06 - UNSAFE SPEED 07 - IMPROPER TURN		NG SIDEA	WRONG WAY	,		/ISIBLE (DAI	RK CLOTHING)	08	- WORN OR SLICK TIRES - TRAILER EQUIPMENT DEFECT	TIVE
00 - UNKNOWN	08 - LEFT OF CENTER 09 - FOLLOWED TOO CLOSI	ELY/ACDA 19 - OPER		EFECTIVE EQUIPMENT		/SIGN	ALS/OFFICE		10	MOTOR TROUBLE DISABLED FROM PRIOR ACCII OTHER DEFECTS	DENT
	10 - IMPROPER LANE CHAN /PA\$SING/OFF RDAD			G/FALLING/SPILLING PER ACTION			NG SIDE OF R NON-MOT	THE ROAD ORIST ACTION			
SEQUENCE OF EVENT	s [] 3[] 4[]	5	6	NON-COLLLSION EVE		06 - EQUI	PMENT FAILU	JRE 10-0	ROSS MEDIAN		
20				02 - FIRE/EXPLOSION 03 - IMMERSION		07 - SEPA	RATION OF L	JNITS	ROSS CENTER LINE	FTRAVEL	
	MOST HARMFUL	99 - UNKNOV	ŴN	04 - JACKKNIFE 08 - CARGO/EQUIPMEN	IT LOSS OR SHIFT		off road r off road le		NOWNHILL RUNAWAY	N	
EVENT	EVENT	OT FIXED		COLLISION WITH FIXE 25 - IMPACT ATTENUAT		N		41	- OTHER POST, POLE	42 - CULVERT	
14 - PEDESTRIAN 15 - PEDALCYCLE	22 - WC	RKED MOTOR VEHICLE DRK ZONE MAINTENANCE				35 - MEC	DIAN CONCRE		OR SUPPORT CULVERT	49 - FIRE HYDRANT 50 - WORK ZONE MAINTENANK	CE
16 - RAILWAY VEHIC 17 - ANIMAL - FARM 18 - ANIMAL - DEER	OF	RUCK BY FALLING, SHIFT ANYTHING SET IN MOTH		 28 - BRIDGE PARAPET 20 - BRIDGE RAIL 30 - GUARDRAIL FACE 		37 TRA	DIAN OTHER IFFIC SIGN P FRHEAD SIGN	YOST 44	- CURB - OITCH - EMBANKMENT	EQUIPMENT 61 - WALL, BUILDING, TUNNE 52 - OTHER FIXED OBJECT	3L
19 - ANIMAL - DELK 19 - ANIMAL - OTHER 20 - MOTOR VEHICLI	24 - OT	DTOR VEHICLE HER MOVABLE OBJECT DT		31 - GUARDRAIL FACE 31 - GUARDRAIL END 32 - PORTABLE BARRI		30 - LIGH		ES SUPPORT 46	- FENCE - MAILBOX		
UNIT SPEED	POSTED SPEED TRAFFIC	CONTROL 01 - NO CONTRO	1.5	07 - RAILROAD CROSSBU	ċ	ROSSWALKI	L	JNIT DIRECTION	1 - NORTH	5 - NORTHEAST 0 - UNKNO	014151
	60	02 - STOP SIGN 03 - YIELD SIGN		07 - RAILROAD CROSSBU 08 - RAILROAD FLASHERS 00 - RAILROAD GATES	i 14 - V	ALK/DON'T V		^{FROM} 4 то	3 2- SOUTH 3- EAST	6 - NORTHEAST 7 - SOUTHEAST	OVVIN
STATED ESTIMATED		04 - TRAFFIC SIG 05 - TRAFFIC FLA	NAL SHERS	10 - CONSTRUCTION BAR 11 - PERSON (FLAGGER, C	RICADE 16 - N OFFICER)	OT REPORTE			4 - WEST	8 - SOUTHWEST	_
		08 - SCHOOL ZON	1E	12 - PAVEMENT MARKING	S		<u> </u>			PAGE 2 OF	9

OHIC	UNIT						LOCADREPORT	IUMBER			
ZUEATON - MENCE - PROTECTOR				· · · · · · · · · · · · · · · · · · ·	<u>.</u>			617			
	NER NAME: LAST, FIRST, MIDDLE	·	,		OWNER PHONE NUM	IBER - INC, AREA O	ode (🛄 same as driver		DAMAGED ARE	A Front	
	ITY, STATE, ZIP (SAME AS DRIV	<mark>ury, Earl,</mark> അ	v					4		02	\sum
		•	oad Cle	eveland, (Ohio 441	28		I - NONE	∞		G⁰
LP STATE LICENS	E PLATE NUMBER		VEHICLE IDENTI	IFICATION NUMBER			# OCCUPANT	3 2 - MINOR			
VEHICLE YEAR	VEHICLE MAKE							3 - FUNCTIONAL	08	10	04
			VEHICLE	e model		VENCE		4 - DISABLING	0751		C 05
PROOF OF IN INSURANCE SHOWN	GURANCE COMPANY		POLICY NUM	ABER		TOWED BY		9 - UNKNOWN			J
CARRIER NAME, ADDRI	ESS, CITY, STATE, ZIP		I	·	I .			CARRIER PHON	E-INCLUDE AREA	REAR CODE	
US DOT	VEHICLE WEIGHT GVWR		CARGO BODY TYPE	E - NO CARGO BODY TY		00 POLE	TRAFFICWAY DESC	RIPTION			
HM PLACARD ID No.	2 - 10,001 TO 26,		02	- BUS/VAN (0-15 SEA - BUS (10+ SEATS, IN	TS, INC DRIVER)	10 - CARGO TAN 11 - FLAT BED	"` 2-TWO-W	AY, NOT DIVIDED AY, NOT DIVIDED, CON			
	3 MORE THAN	26,000 LBS.	04	- VEHICLE TOWING A		12 - DUMP 13 - CONCRETE M	#XER 4-TWO-W	ay, divided, unprote ay, divided, positive) Median
HM CLASS	HAZARDOUS MAT	ERIAL	07	- INTERMODAL CONTA - CARGO VAN/ENCLOS	SED BOX	14 - AUTO TRANS 15 - GARBAGE/RE	EFUSE	AY TRAFFICWAY			
NON+MOTORIST LOCATI	ON PRIOR TO IMPACT	TYPE OF USE	08 UNITTYPE	GRAIN, CHIPS, GRA	AVEL	00 - OTHERVUNKN	KOWN HIT / SKIP U	117		•••	
	ERSECTION - MARKED CROSSWALK ERSECTION - NO CROSSWALK		26	PASSENGER VEHICLE 01 - SUB-COMP	ES (LESS THAN 9 PASSEN) PACT		TRUCKS OR COMBO UNIT UNIT TRUCKS OR VAN 2 A		WILMO (9 OR MO BUS/VAN (9-15 S		
03-INI	TERSECTION - OTHER X8LOCK - MARKED CROSSWALK	1 - PERSONAL	99 - UNKNOW	02 - COMPACT		14 - SINGLE	UNIT TRUCK: 3+ AXLES UNIT TRUCK / TRAILER	22 - 1	OUS (16+ SEATS		
	AVEL LANE - OTHER LOCATION CYCLE LANE	2 - COMMERCIAL 3 - GOVERNMENT	OR HIT / SKIP	04 - FULL SIZE 05 - MINIVAN			/TRACTOR (BOBTAIL) OR/SEMI-TRAILER		NIMAL WITH RIE NIMAL WITH BUG		NIPPEV
	OULDER/ROADS;DE DEWALK		-	06 - SPORT UTI 07 - PICKUP	ILITY VEHICLE		OR/DOUBLE OR/TRIPLES	25 - E	ICYCLE/PEDACY	CLIST	SOLUTION C 1
10 - DR	DIAN/CROSSING ISLAND IVEWAY ACCESS			08 - VAN 09 - MOTORCY(20 - OTHER	R MED/HEAVY VEHICLE		THER NON-MOTO		
12 - NO	ARED-USE PATH OR TRAIL N-TRAFFICWAY AREA	RESPONSE	1	10 - MOTORIZE 11 - SNOWMOB	ILE / ATV	Пн	AS HM PLACARD	1			
	HERJUNKNOWN	00 - AMBULANCE	17.5	ARM VEHICLE	SSENGER VEHICLE				ACTION		
	- TAXI - FRENTAL TRUCK (OVER 10x LBS)	10 - FIRE 11 - HIGHWAY/MAIN	18 - F	ARM EQUIPMENT	08		08 - LEFT SIDE R FRONT 09 - LEFT FRON		4 2	- NON- CONT - NON-COLLIS	ACT SION
└─└──┘ ⋈	- BUS - SCHOOL (PUBLIC OR PRIVATE) - BUS - TRANSIT		20 - G	SOLF CART FRAIN	IMPACT A	03 - RIGHT F REA 04 - RIGHT S	NDE 11 - UNDERCAR	RIAGE	. 4	- STRIKING - STRUCK	
	- BUS - CHARTER - BUS - SHUTTLE	14 - PUBLIC UTILITY 15 - OTHER GOVERN		DTHER (EXPLAIN IN NAG		05 - RIGHT F 00 - REAR CI	ENTER 06 - REAR CENT			- STRIKING/S - UNKNOWN	TRUCK
08 PRE-CRASH ACTIONS	- BUS - OTHER	16 - CONSTRUCTION	Equip.			07 - LEFT RE	EAR 14 - OTHER				
19	MOTORIST 01 - STRAIGHT A HEAD	07 - MAKING U-TUR	N		TING A CURVE		OR CROSSING SPECIFIED		- OTHER NON -I	MOTORIST AC	OTION
99 - UNKNOWN	03 - CHANGING LANES	08 - ENTERING TRA 09 - LEAVING TRAFI		14 - OTHER M	IOTORIST ACTION	17 WORKING	UNNING, JOGGING, PLAY	ING, CYCLING			
	05 - MAKING RIGHT TURN	10 - PARKED 11 - SLOWING OR S	TOPPED IN TRAI	FFIC			Ehicle Ing or Leaving Vehicle				
		12 - DRIVERLESS				20 - STANDING					
CONTRIBUTING CIRC PRIMARY	MOTORIST					ION-MOTOR			TURN SIGNALS	;	
32	01 - NONE 02 - FAILURE TO YIELD		OPER BACKING OPER START FR	ROM PARKED POSIT		22 - NONE 23 - IMPROPER CR	ROSSING	L 03.	HEAD LAMPS TAIL LAMPS		
	03 - RAN RED LIGHT 04 - RAN STOP SIGN		PED OR PARKE	D ILLEGALLY IN NEGLIGENT MAI		24 - DARTING 25 - LYING AND/OF	R ILLEGALLY IN ROADWA	/ 05·	BRAKES STEERING		
SECONDARY	05 - EXCEEDED SPEED LIMIT 06 - UNSAFE SPEED		RVING TO AVOID NG SIDE/WRONG	D (DUE TO EXTERNA G WAY		27 - NOT VISIBLE (I	IELD RIGHT OF WAY DARK CLOTHING)	07 -	TIRE BLOWOU' WORN OR SLID	K TIRES	
	07 - IMPROPER TURN 08 - LEFT OF CENTER	18 - VISIO	IRE TO CONTRO	N			BEY TRAFFIC SIGNS	- 90	TRAILER EQUIP MOTOR TROUE DISABLED FRO	LE	
89 - UNKNOWN	09 - FOLLOWED TOO CLOSELY 10 - IMPROPER LANE CHANGE	20 - LOAD	SHIFTING/FALL			/SIGNALS/OFF 30 - WRONG SIDE	OF THE ROAD		OTHER DEFEC		2100-011
SEQUENCE OF EVEN	/PASSING/OFF ROAD	21 - 0188	R IMPROPER AC	ON-COLLESION EVE		2 - UTHER NUN-M	IOTORIST ACTION				
¹ 20 ²	1 3 1 4 1			1 - OVERTURN/ROLLO 2 - FIRE/EXPLOSION			RAKE FAILURE, ETC) 11 - CI	ROSS MEDIAN ROSS CENTER LINE			
			и М	3 - IMMERSION 4 - JACKKNIFE		07 - SEPARATION C 08 - RAN OFF ROAL	D RIGHT 12-D	FOSITE DIRECTION OF WINHILL RUNAWAY			
		00 - 0144101	u	5 - CARGO/EQUIPMEN DELISION WITH FIXE		09 - RAN OFF ROAL	D LEFT 13-0	THER NON-COLLISION			
COLLISION WITH PE	RSON, VEHICLE OR OBJECT NO 21 - PARK	<u>T.FIXED</u> ED MOTOR VEHICLE	25	5 - IMPACT ATTENUAT	OR/CRASH CUSHION	34 - MEOIAN GUA		OTHER POST, POLE OR SUPPORT	42 - CULVERT 49 - FIRE HYD		ļ
15 - PEDALCYCLE 16 - RAILWAY VEHI		(ZONE MAINTENANCE OK BY FALLING, SHIFT		7 - BRIDGE PIER OR A 9 - BRIDGE PARAPET	BUTMENT	35 - MEDIAN CON 38 - MEDIAN OTH		CULVERT	50 - WORK ZO EQUIPME	NE MAINTENA/	NCE,
17 - ANIMAL - FARM 18 - ANIMAL - DEER		YYTHING SET IN MOT) XR VEHICLE		9 - BRIDGE RAIL 0 - GUARDRAIL FACE		37 - TRAFFIC SIG 38 - OVERHEAD S		DITCH EMBANKMENT	51 - WALL, BL 52 - OTHER FI	IILDING, TUNN KED OBJECT	√EL
10 - ANIMAL - OTHE 20 - MOTOR VEHICI		R MOVABLE OBJECT		1 - GUARDRAIL END 2 - PORTABLE BARRIE	R	30 - LIGHT/LUMIN 40 - UTILITY POL		FENCE MAILBOX			
UNIT SPEED	POSTED SPEED TRAFFIC C	ONTROL 01 - NO CONTRO	_S 07-RA	LROAD CROSSBUC	CKS 13-CRO	SSWALK LINES			5 - NORTHEAS	ST 10-UNKN	NOMN
011	[6]0]	02 - STOP SIGN 03 - YIELD SIGN	00 - RA	LROAD FLASHERS		K/DON'T WALK	FROM 2 TO	1 2 - SOUTH 3 - EAST	0 - NORTHWE 7 - SOUTHEAS	ST	
		04 - TRAFFIC SIG 05 - TRAFFIC FLA	NAL 10-CO	NSTRUCTION BAR	RICADE 10 - NOT		_	4 - WEST	0 - SOUTHWE	ST	
		06 - SCHOOL ZON		VEMENT MARKINGS			L		P		9

	11											
EDUCATION - SPIRICE - PROTECTION	UNIT								66			
	IER NAME: LAST, FIRST, MIDDLE	(🔲 SAME AS DRIVE	R)		OWNER PHONE NU	JMBER - INC	C. AREA CODE	e (🛄 Same as Driv	ER) C	DAMAGE SCALE	DAMAGED ARE	
OWNER ADDRESS: CIT		ny, Derric	ka, T.			2167	73204	30		4	_∞ √∏	
		udyard Re		eveland, (Dhio 441	10					\mathbb{P}^{+}	
OH	PLATE NUMBER X268230		1	IND52	[T]9M6	2 1				2 - MINOR 3 - FUNCTIONAL	08	10
VEHICLE YEAR	VEHICLE MAKE Chevi	olet	VEHICU	E MODEL Ma	ılibu		VEHICLECO	LOR		4 - DISABLING	07	05
PROOF OF INSURANCE SHOWN	Genera	al	POLICYNU 2	5-0B1522	2737	TOWED BY		L2/8775	,	9 - UNKNOWN		Rear
CARRIER NAME, ADDRES	SS, CITY, STATE, ZIP									CARRIER PHONE	INCLUDE AREA (XODE
US DOT	VEHICLE WEIGHT GVWR	00111	CARGO BODY TYP	IE 1 - NO CARGO BODY TY	IPE/NOT APPLICABL	E 09-PO	DLE	TRAFFICWAY DE				····
HM PLACARD ID No.				2 - BUS/VAN (0-15 SEA 3 - BUS (16+ SEATS, IN	ITS, INC DRIVER) IC DRIVER)		RGO TANK	4 2. TW	DWAY, N	NOT DIVIDED NOT DIVIDED, CONTI		
		-0,000 LBS.	œ	4 - VEHICLE, TOWING A 5 - LOGGING			NORETE MIXE	R 4-TW)-way, C	JVIDED, UNFROTED DMDED, POSITIVE N RAFFICWAY		(GRASS>4FL) MEDIAN
HM CLASS NUMBER	HAZARDOUS MATT RELEASED	rial i	07	3 - INTERMODAL CONT/ 7 - CARGO VAN/ENCLOS 8 - GRAIN, CHIPS, GR/	SED BOX	15 GA	TO TRANSPOR RBAGE/REFU: HER/UNKNOW	SE Class				
NON-MOTORIST LOCATIO	IN PRIOR TO IMPACT	TYPE OF USE					···· ·	,				
	RSECTION - MARKED CROSSWALK RSECTION - NO CROSSWALK RSECTION - OTHER	1	04	01 - SUB-COMP 02 - COMPACT	ES (LESS THAN 9 PASSE) Pact	, 13 14	3 - SINGLE UN 4 - SINGLE UN	UCKS OR COMBO U IIT TRUCKS OR VAN IIT TRUCK; 3+ AXLES	2 AXLE,	,6 TIRES 21 - B 22 - B	USAVAN (9-15 S US (16+ SEATS	E INCLUDING DRIVER) EATS, INC DRIVER , INC DRIVER
05 - TRAV	BLOCK - MARKED CROSSWALK VEL LANE - OTHER LOCATION YCLE LANE	1 - PERSONAL 2 - COMMERCIAL	00 - UNKNO) OR HIT / SKI			16	6 - TRUCK/TRA	IIT TRUCK / TRAILER ACTOR (BOBTAIL) SEMI-TRAILER		23 - Al	DTORIST NIMAL WITH RIE	
	ULDER/ROADSIDE	3 - GOVERNMENT	-	06 - SPORT UTI 07 - PICKUP	ILITY VEHICLE	18	B - TRACTOR	DOUBLE		25 - 80	CYCLE/PEDACYC	
00 - MED	AN/CROSSING ISLAND AEWAY ACCESS			08 - VAN 09 - MOTORCY	CLE			ED/HEAVY VEHICLE			DESTRIAN/SKAT	
12 - NON	RED-USE PATH OR TRAIL I-TRAFFICWAY AREA ER/UNKNOWN	RESPONSE		10 - MOTORIZE 11 - SNOWMOB 12 - OTHER PA		E	🗌 Has	B HM P lacar	D			
	NONE TAXI	00 - AMBULANCE 10 - FIRE		FARM VEHICLE FARM EOUIPMENT			- NONE	08 - LEFT SID CONT 00 - LEFT FR		99 - UNKNO		- NON- CONTACT - NON-COLLISION
leti on	RENTAL TRUCK (OVER 10k LBS) BUS - SCHOOL (PUBLIC OR PRIVATE)		20 - 0	MOTORHOME GOLF CART		- O3 ·	- RIGHT FRO	NT 10 - TOP AND	WINDO		3 نا ،	- STRIKING - STRUCK
08-	BUS - TRANSIT BUS - CHARTER BUS - SHUTTLE	13 - POLICE 14 - PUBLIC UTILITY 15 - OTHER GOVERN	22-0	TRAİN Other (Explain in Naf		1	- RIGHT REAL	R 12 - TOTAL (A	LL ARE		5	- STRIKING/STRUCK
}	BUS - OTHER	16 - CONSTRUCTION					- LEFT REAR	14 • OTHER				
	MOTORIST 01 - STRAIGHT A HEAD	07 - MAKING U-TUR	N		TING A CURVE	15 - EN		CROSSING SPECIFI			OTHER NON -	OTORIST ACTION
99 - UNKNOWN		08 - ENTERING TRA 09 - LEAVING TRAFI		14 - OTHER M	IOTORIST ACTION	17 - WO	ORKING	NING, JOGGING, PL	AYING	CYCLING		
	05 - MAKING RIGHT TURN	10 - PARKED 11 - SLOWING OR S 12 - DRIVERLESS	TOPPED IN TRA	\FFIC		19 - API	SHING VEHIC PROACHING ANDING	OR LEAVING VEHI	CLE			
CONTRIBUTING CIRCI		12 - DRIVERLESS				20 • 3 17				VEHICLE DEFEC	TS	
PRIMARY	MOTORIST					NON-MOT IST 22 - NONI				01-	TURN SIGNALS HEAD LAMPS	
13	01 - NONE 02 - FAILURE TO YIELD 03 - RAN RED LIGHT	12 - IMPR	OPER BACKING OPER START FI PEO OR PARKE	ROM PARKED POSIT			OPER CROS	SING			TAIL LAMPS BRAKES	
SECONDARY	04 - RAN STOP SIGN 05 - EXCEEDED SPEED LIMIT	14 - OPER	RATING VEHICL	E IN NEGLIGENT MA		25 - LYING	g and/or ili	LEGALLY IN ROAD I RIGHT OF WAY	VAY	- 80	STEERING TIRE BLOWOUT	
	06 - UNSAFE SPEED 07 - IMPROPER TURN	17 - FAILU	NG SIDE/WRON	OL		28 - INAT	TENTIVE	RK CLOTHING)		- 80	WORN OR SLIC TRAILER EQUIF MOTOR TROUE	MENT DEFECTIVE
99 - UNKNOWN	08 - LEFT OF CENTER 09 - FOLLOWED TOO CLOSEL	YACDA 19 - OPER	IN OBSTRUCTIO RATING DEFECT SHIFTING/FALI	IVE EQUIPMENT		/SIGN	VALS/OFFICE			10 -		M PRIOR ACCIDENT
	10 - IMPROPER LANE CHANGE /PASSING/OFF ROAD		R IMPROPER A				NG SIDE OF					-
SEQUENCE OF EVENT	s]] 3[] 4[┓₅╔╌┰╌┓	6	ON-COLLISION EVE 01 - OVERTURN/ROLLO	WER		IPMENT FAILU			S MEDIAN		
			السلسا ر	02 - FIRE/EXPLOSION 03 - IMMERSION 04 - JACKKNIFE		07 - SEP/	aration of U I OFF ROAD RI	INITS	OPPOS	S CENTER LINE SITE DIRECTION OF IHILL RUNAWAY	TRAVEL	
		99 - UNKNOV	VN (15 - CARGO/EQUIPMEN			OFF ROAD LE			R NON-COLLISION		
	RSON, VEHICLE OR OBJECT NO		2	OLLISION WITH FIXE 25 - IMPACT ATTENUAT	OR/CRASH CUSHION			RAIL BARRIER		HER POST, POLE	42 - CULVERT 49 - FIRE HYD	
14 - PEDESTRIAN 15 - PEDALCYCLE 16 - RAILWAY VEHIC	22 - WOR	ED MOTOR VEHICLE < ZONE MAINTENANCE CK BY FALLING, SHIFT	E EQUIPMENT 2	26 - BRIDGE OVERHEAU 27 - BRIDGE PIER OR A 20 - BRIDGE PARAPET		35 - ME	DIAN CONCRE	ETE BARRIER	42 - CUL 43 - CUF			NE MAINTENANCE
17 - ANIMAL - FARM 18 - ANIMAL - DEER	ORA	NYTHING SET IN MOTI OR VEHICLE	ONBYA 2	29 - BRIDGE RAIL 30 - GUARDRAIL FACE		37 - TR	AFFIC SIGN P	OST	44 - DITI			JILDING, TUNNEL
19 - ANIMAL - OTHER 20 - MOTOR VEHICLI	R 24-011-1E	R MOVABLE OBJECT	3	31 - GUARDRAIL END 32 - Portable Barri			HTALUMINARII		46 - FEN 47 - MAI			
UNIT SPEED	POSTED SPEED TRAFFIC	ONTROL 01 - ND CONTRO	LS 07-R	AILROAO CROSSEU	CKS 13-CR	OSSWALK				1 - NORTH	5 - NORTHEA	ST 0-UNKNOWN
00	60	02 - STOP SIGN 03 - YIELD SIGN	08 - R 60 - R	AILROAD FLASHERS AILROAD GATES	15 - OT			4	7	2 - SOUTH 3 - EAST	6 - NORTHWE 7 - SOUTHEAS	ST .
STATED		04 - TRAFFIC SIG 05 - TRAFFIC FLA 08 - SCHOOL ZO2	SHERS 11 - PI	ONSTRUCTION BAR ERSON (FLAGGER, C AVENENT MARKING	OFFICER)	T REPORT				4 - WEST	0 - SOUTHWE	1.2
]	ll	08 - SCHOOL ZOI	•⊑ 12•P/	AVEMENT MARKING			I					AGE 5 OF 9

HSY8304 OH1U (Rev 01/12)

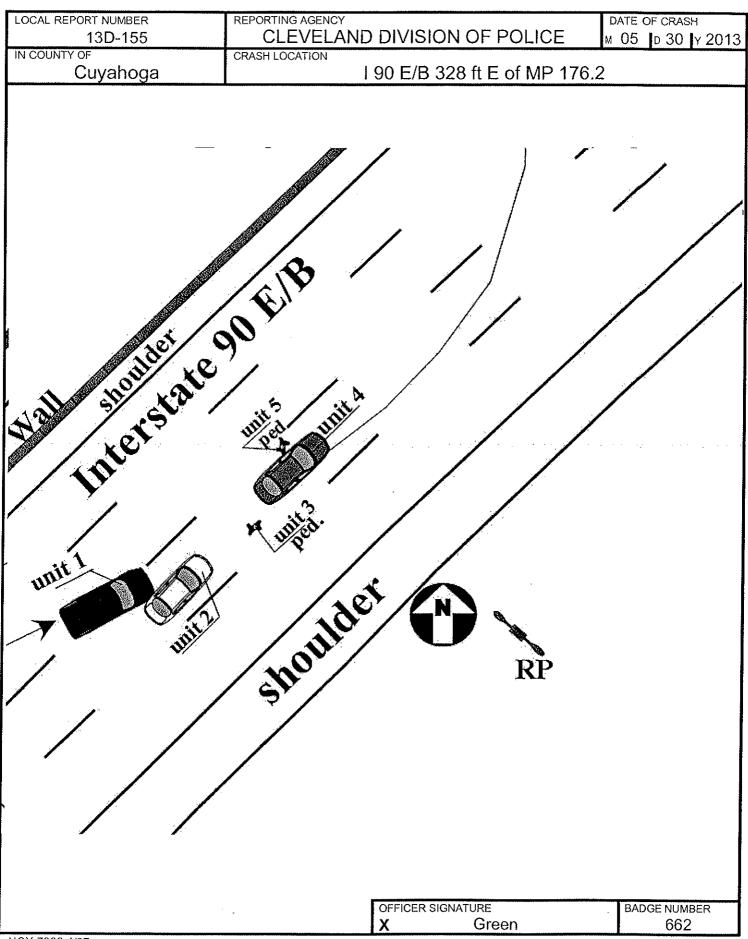
UNIT NUMBER OWNER NAME: LAST, FIRST, MIDDLE (
Bolden, Eric, C.	2162885156 3 FRONT
OWNER ADDRESS: CITY, STATE, ZIP (SAME AS DRIVER)	
10616 Everton Avenue Clevelar	nd, Ohio 44106
LP STATE LICENSE PLATE NUMBER VEHICLE IDENTIFICATION NUMBER	R # 000UPPANTS 2- MINOR 4 1 10 1
	V9HCLECQLOR
PROOF OF INSURANCE COMPANY POLICY NUMBER	TOWED BY
SHOWN	
CARRIER NAME, ADDRESS, CITY, STATE, ZIP	CARRIER PHONE- INCLUDE AREA CODE
US DOT VEHICLE WEIGHT GVWR/GCWR CARGO BODY TYPE	Y TYPENOT APPLICABLE 00 - POLE TRAFFICWAY DESCRIPTION
HM PLACARD ID No. 2 - 10,001 TO 26,000 Lss. 02 - BUSVAN (0-15 3	SEATS, INC DRIVER) 10 - CARGO TANK 1 - TWO-WAY, NOT DMDED S INC DRIVER) 11 - ELAT BED 2 - TWO-WAY, NOT DMDED, CONTINUOUS LEFT TURN LANE
	G ANOTHER VEHICLE 12 · DUMP 13 · CONCRETE MIXER 4 · TWO-WAY, DWDED, UNPROTECTED (PAINTED OR GRASS > 4 Pt.) MEE 13 · CONCRETE MIXER
HAZARDOUS MATERIAL 00 - INTERNODAL CO	LOSED BOX 15 - GARBAGE/REFUSE
08 - GRAIN, CHIPS,	
	IRLES (LESS THAN 9 PASSENGERS) MEDIALEAVY TRUCKS OR COMBO UNITS > 10K LBS BUSYANUMO (9 OR MORE INCLUDING DRIV DMPACT 13- SINGLE UNIT TRUCKS OR VAN 2 AXLE, 0 TIRES 21 - BUSYAN (0-15 SEATS, INC DRIVE
	CT 14 - SINGLE UNIT TRUCK; 3+ AXLES 22 - BUS (16+ SEATS, INC DRIVER
04 - MIDBLOCK - MARKED CROSSWALK 1 - PERSONAL 09 - UNKNOWN 03 - MID SL2 05 - TRAVEL LANE - OTHER LOCATION 2 - COMMERCIAL 07 HIT / SKIP 04 - FULL 31 00 - BICYCLE LANE 3 - COMMERCIAL 05 - MINIVAI	IZE 16 - TRUCK/TRACTOR (BOBTAIL) 23 - ANIMAL WITH RIDER
	UTILITY VEHICLE 18 - TRACTOR/DOUBLE 25 - BICYCLE/PEDACYCLIST
09 - MEDIAN/CROSSING ISLAND 08 - VAN 10 - DRIVEWAY ACCESS 🔲 IN EMERGENCY 09 - MOTOR	20 - OTHER MED/HEAVY VEHICLE 27 - OTHER NON-MOTORIST
11 - SHARED-USE PATH OR TRAIL RESPONSE 10 - MOTOR 12 - NON-TRAFFICWAY AREA 11 - SNOWN	
09 - OTHERUNKNOWN 12 - OTHER SPECIAL FUNCTION 01 - NONE 00 - AMBULANCE 17 - FARM VEHICLE	PASSENGER VEHICLE ACTION
CONTROL OF TAXE CONTROL CONTR	U 4 2- CENTER FRONT 09-LEFT FRONT 4 2- NON-COLLISION
04-BLS-SCHOOL (PUBLIC OR PRIVATE) 12-MILITARY 20-GOLF CART 05-BLS-TRANSIT 13-POLICE 21-TRAIN	IMPACT AREA 04 - RIGHT SIDE 11 - UNDERCARRIAGE 4 - STRUCK
00 - BUS - CHARTER 14 - PUBLIC UTILITY 22 - OTHER (EXPLAIN IN 07 - BUS - SHUTTLE 15 - OTHER COVERNMENT	U 4 06 - REAR CENTER 06 - REAR CENTER 9 - UNKNOWN
08 - BUS - OTHER 16 - CONSTRUCTION EQUIP. PRE-CRASH ACTIONS	07 - LEFT REAR 14 - OTHER
MOTORIST 01 - STRAIGHT A HEAD 07 - MAKING U-TURN 13 - NEGO	NON-MOTORIST ITIATING A CURVE 15 - ENTERING OR CROSSING SPECIFIED LOCATION 21 - OTHER NON -MOTORIST ACTIO
02 · BACKING 08 · ENTERING TRAFFIC LANE 14 · OTHE 89 · UNKNOWN 03 · CHANGING LANES 09 · LEAVING TRAFFIC LANE	R MOTORIST ACTION 18 - WALKING, RUNNING, JOGGING, PLAYING, CYCLING 17 - WORKING
04 - OVERTAKING/PASSING 10 - PARKED 05 - MAKING RIGHT TURN 11 - SLOWING OR STOPPED IN TRAFFIC	18 - PUSHING VEHICLE 19 - APPROACHING OR LEAVING VEHICLE
08 - MAKING LEFT TURN 12 - DRIVERLESS	20 - STANDING
CONTRIBUTING CIRCUMSTANCES PRIMARY MOTORIST	NON-MOTOR 01 - TURN SIGNALS
32 01 - NONE 11 - IMPROPER BACKING 02 - FAILURE TO YIELD 12 - IMPROPER START FROM PARKED PC	DIST IST 22 - NONE 02 - HEAD LAMPS 03 - TAIL LAMPS 03 - TAIL LAMPS
03 - RAN RED LIGHT 13 - STOPPED OR PARKED ILLEGALLY 04 - RAN STOP SIGN 14 - OPERATING VEHICLE IN NEGLIGENT	24 - DARTING 04 - BRAKES MANNER 25 - LYING AND/OR ILLEGALLY IN ROADWAY 05 - STEERING
SECONDARY 05 - EXCEEDED SPEED LIMIT 15 - SWERVING TO AVOID (DUE TO EXTEN 06 - UNSAFE SPEED 18 - WRONG SIDE/WRONG WAY	27 - NOT VISIBLE (DARK CLOTHING) 07 - WORN OR SLICK TIRES
07 - IMPROPER TURN 17 - FAILURE TO CONTROL 08 - LEFT OF CENTER 18 - VISION OBSTRUCTION	20 - MATTERTINE 09 - MOTOR TROUBLE 20 - FAILURE TO OBEY TRAFFIC SIGNS 09 - MOTOR TROUBLE
99 - UNKNOWN 09 - FOLLOWED TOO CLOSEL VIACDA 19 - OPERATING DEFECTIVE EQUIPMENT 10 - IMPROPER LANE CHANGE 20 - LOAD SHIFTING/FALLING/SPILLING	30 - WRONG SIDE OF THE ROAD 11 - OTHER DEFECTS
/PASSING/OFF ROAD 21 - OTHER IMPROPER ACTION SEQUENCE OF EVENTS NON-COLLLSION I	32 - OTHER NON-MOTORIST ACTION
	ILLOVER 00 - EQUIPMENT FAILURE 10 - CROSS MEDIAN
	07 - SEPARATION OF UNITS OFFOSITE DIRECTION OF TRAVEL 08 - RAN OFF ROAD RIGHT 12 - DOWNHILL RUNAWAY
	VENTLOSS OR SHIFT 09 - RAN OFF ROAD LEFT 13 - OTHER NON-COLLISION
COLLISION WITH PERSON, VEHICLE OR OBJECT NOT FIXED 25 - MPACT ATTEN 14 - PEDESTRIAN 21 - PARKED MOTOR VEHICLE 20 - BRIDGE OVER	UATOR/CRASH CUSHION 41 - OTHER POST, POLE 42 - CULVERT
13 - PEDALCYCLE 22 - WORK ZONE MAINTENANCE EQUIPMENT 27 - BRIDGE PIERO 14 - RAILWAY VEHICLE (TRAIN ENGINE) 23 - STRUCK BY FALLING, SHIFTING CARGO 28 - BRIDGE PARAP	R ABUTMENT 35 - MEDIAN CONCRETE BARRIER 42 - CULVERT 50 - WORK ZONE MAINTENANCE
17 - ANIMAL - FARM OR ANYTHING SET IN MOTION BY A 29 - BRIDGE RAIL 18 - ANIMAL - DEER MOTOR VEHICLE 30 - GUARDRAIL F/	37 - TRAFFIC SIGN POST 44 - DITCH 51 - WALL, BUILDING, TUNNEL
10 - ANIMAL - OTHER 24 - OTHER MOVABLE OBJECT 31 - GUARDRAUE 20 - MOTOR VEHICLE IN TRANSPORT OBJECT 32 - PORTABLE BAI	ND 39 - LIGHT/LUMINARIES SUPPORT 46 - FENCE
UNIT SPEED POSTED SPEED TRAFFIC CONTROL	BUCKS 13- CROSSWALK LINES SOON 1- NORTH 5- NORTHEAST 9- UNKNOW
01 - NO CONTROLS 07 - RAILROAD CROSS 02 - STOP SIGN 08 - RAILROAD FLASHE 03 - YIELD SIGN 09 - RAILROAD GATES	ERS 14-WALK/DON'T WALK 6 10 7 2-SOUTH 6-NORTHWEST
STATED	BARRICADE 16 - NOT REPORTED 4 - WEST 8 - SOUTHWEST
ESTIMATED 00 - SCHOOL ZONE 12 - PAVEMENT MARKI	

-

		OHIO OF PUBLIC SAFETY	<u>Mo</u>	TORIS	г/ <mark>N</mark>	<u> </u>	Mo	TOF	<u>RIST / O</u>	<u>C(</u>	<u>UPANT</u>		HT NUME	TH I			11
ſ		ER NAME:	LAST, FIRST	í, middle											AGE	GENDER	F-FEMALE
-	O1	CITY, STATE, 2	3P		Na	njjar,N	/lohar	ned,	Υ.			120		1984 TRHONE INCL		M	M - MALE
DTORISY	T T		(T)) D) (zroy S	Street			e, Ohio 441	_					1674958		
ST/NON MC	1		EN 8Y EM	IS AGENCY					rinured taken to	١r				SEATING POSIT		GE EJECTIO	
MOTOR			LICENSE NU		a. a.as					CTED	ALCOHOL TEST STATUS	ALCOHOL TEST	TYPE A	LCOHOL TEST V		STATUS DR	LG TEST TYPE
		CHARGED (78590 ^{XXE)}		OL BNSE DESOR				с	TATION NUMBER		<u> </u>				
-	UNIT NUMBE	FR NAME	AST, FIRST	MIDONS								DATE OF BIRTH		USE USE		GENDER	
			3 10 1, 1 10 1	, model													- FEMALE 4 - MALE
ORIST	ADDRESS, C	XTY, STATE, Z	P										CONTAC	TPHONE INCLU	de area code		
	NURIES	INJURED TAK	EN BY EM:	S AGENCY			MEDICA	LFACILITY	(INJURED TAKEN TO	SA	TETY EQUIPMENT USED			SEATING POSIT	ON AIR BAG USA	SE EJECTIO	
MOTORIST	XL STATE	OPERATOR	LICENSE NU	MBER		NO		сонытю	ALCOHOL DRUG SUSPE	CTED	ALCOHOL TEST STATUS	ALCOHOL TEST	TYPE	LCOHOL TEST V			
	DFFENSE C	CHARGED (XDE)		OL OL ENSE DESCR										/ER DISTRACT	EDBY
															∞ [[]
	NJURIES 1 - NO INJU 2 - POSSIBI	JRIES / NON LE	REPORTED	INJURED TAKEN E 1 - NOT TRANSPO TREATED AT S	RTED /	MOTORIS					VFETY EQUIPMENT		09 - N	IOTORIST			E CLOTHING
	3 - NON-INC 4 - INCAPA 5 - FATAL	CAPACITATII CITATING	łG	2 - EMS 3 - POLICE 4 - OTHER		02 - SHC 03 - LAP	HE USED - VE DULDER BELT BELT ONLY DULDER AND	T ONLY U USED	ISED 06 - CHILD F 07 - BOOSTI	RESTR ER SE			11-P	ELMET USED ROTECTIVE F ELBOW, KNEE	ADS USED 14 -	LIGHTING OTHER	
		상태 영화 영화 영화	(MOTOPC)	9 - UNKNOWN YCLE DRIVER)	07 TH		IDE (MOTOF					N 0050 0400	0.054	영상 감독을 통한 것	AIR BAG USAGE		
	02 - FRONT 03 - FRONT	F • MIDDLE F • RIGHT SIE	ε	CYCLE PASSENGER	08 - THI 09 - THI	rd - Middl Rd - Right	E			13 - TI 14 - R	ASSENGER IN UNENC RAILING UNIT DING ON A VEHICLE ON-MOTORIST				2 - DEPLOYED F 3 - DEPLOYED S 4 - DEPLOYED B	RONT	/SIDF
	08 - SECON	VD - MIDDLE VD - RIGHT S	ang Sherika na Velika German		11 - PAS (NC	SENGER IN	NOTHER EN GUNIT SUCH	CLOSED	CARGO AREA IS, PICK-UP WITH CAB)	16 - O 99 - U					5 - NOT APPLICA 9 - DEPLOYMENT	BLE UNKNOWN	
		ECTED Y EJECTED LLY EJECTEI	2 - EXT	T TRAPPED RACT BY	1 - 2 -	CLASS A CLASS B	ENSE CLAS	1	ONDITION 1 - APPARENTLY NORMAI 2 - PHYSICAL IMPAIRMEN	T	8 - UN	LL ASLEEP, F/	UENCE	FATIGUED OF	ALCOHOL/DRUG 1 - NONE 2 - YES - ALCOHO	DL SUSPECT	TED
	4 - NOT AP	化间接化汽油 化合合试验检	3-EX1	CHANICAL MEANS TRACTED BY N-MECHANICAL MEA	4-1	CLASS C REGULAR (MC/MOPED (CLASS (OHIO)		3 - EMOTIONAL (DEPRESSE 4 - ILLNESS	.U, ANK	кт, Disturbed) Мі 7-01	EDICATION, DF THER	1065, A		3 - YES - HBD NO 4 - YES - DRUG S 5 - YES - ALCOHO	USPECTED	
1	LCOHOL T I - NONE G 2 - TEST RE				ALCOHOL T 1 - NONE 2 - BLOOD		DRUG TEST 5 1 - NONE GI 2 - TEST RE	VEN			1 - NONE	DRIVER DISTR 1 - NO DISTRA 2 - PHONE	in All Y			R INSIDE TH RNAL DISTR	
4	- TEST GI	VEN, CONTA VEN, RESUL VEN, RESUL	TS KNOWN		3 - URINE 4 - BREATH 5 - OTHER		4 - TEST GI	VEN, RES	ITAMINATED SAMPLE/UNU: ULTS KNOWN ULTS UNKNOWN	SABLE	3 - URINE 4 - BREATH	3 - TEXTING/E 4 - ELECTRON 5 - OTHER ELI	IC COM	MUNICATION	DEVICE		
U	NIT	NAME: L	AST, FIRST, I	MIDDLE		l					, a terrar de la construcción de la El	ATE OF BIRTH		CE, RADIO, D	AGE		- FEMALE
PANT V	DORESS, CIT	TY, STATE, ZIF	,						·				CONTACT	T PHONE- INCLU	DE AREA CODE		• MALE
OccuPANT Z	JURIES I	NJURED TAKE	N BY EMS	AGENCY			MEDICAL	FACILITY	INJURED TAKEN TO	SAF	ETY EQUIPMENT USED	DOT COMF	IANT	SEATING POSITI	ON AIR BAG USAG	E	TRAPPED
		Ľ										HELMET					
v.		NAME: LA	ST, FIRST, J	MIDDLE								ATE OF BIRTH	I		AGE		- FEMALE - MALE
OCCUPANT	XORESS, CIT	IY, STATE, ZIF						*******					CONTACT	PHONE- INCLU	E AREA CODE	I	
	JURIES II		NBY EMS	AGENCY		·	MEDICAL	FACILITY	INJURED TAKEN TO	SAF					N AIR BAG USAG		
											<u>i</u>	Helmet					TRAFFED

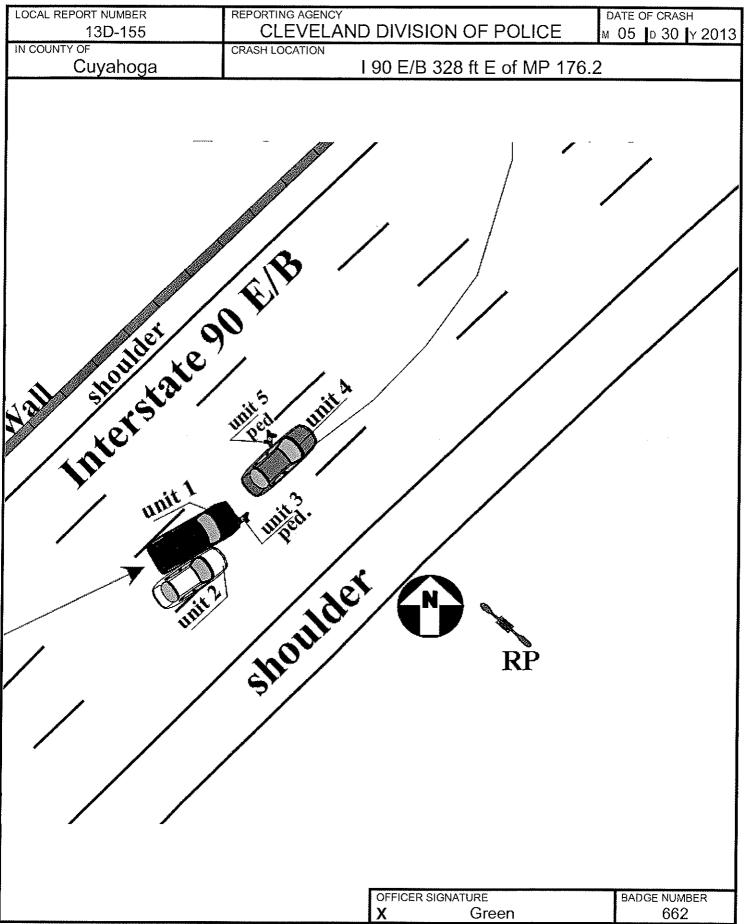
MOTORIST/	Non-Motorist / Oc		
	Loury, Earl, V.	САТЕ СЕ ВИТИ [0]9]2]7	711962 50 GENDER 50 M F - FEMALE M - MALE
ADDRESS, CITY, STATE, ZIP 440 Ingleside	e Road Cleveland, Ohio 4412		NTACT FHONE INCLUDE AREA CODE
5 2 CEMS 1	MEDICAL FACILITY INJURED TAKEN TO	O 1 DOT COMPLI	
OL STATE OPERATOR LICENSE NUMBER OL CI			
		CITATION NUMBER	
	Bolden, Eric, C.	DATE OF BIRTH	5119711 41 M-MALE
ADDRESS, CITY, STATE ZIP	Avenue Cleveland, Ohio 441		2162885156
3 2 CEMS 1	MEDICAL FACILITY INJURED TAKEN TO		
OL STATE OPERATORILODISENUMBER OL CL. UHI OG102691	ASS NO M/C CONDITION ALCOHOL DRUG SUSPECTED	ALCOHOL TEST STATUS ALCOHOL TEST TY	
	DALEAR DESCRIPTION	CITATIONNUMBER	HANDS-FREE DRIVER OKSTRACTED BY DEMCE
INJURIES 1. NO INJURIES / NON REPORTED 2. POSSIBLE INJURED TAKEN BY 1. NOT TRAINSPORTED/ TREATED AT SCENE	MOTORIST		ON-MOTORIST 98-NONE USED 12 - REFLECTIVE CLOTHING
3 - NON-INCAPACITATING 2 - EMS 4 - INCAPACITATING 3 - POLICE 5 - FATAL 4 - OTHER 9 - UNKNOWN 9 - UNKNOWN		IRAINT SYSTEM-REAR FACING BAT	10 - HELMET USED 13 - LIGHTING 11 - PROTECTIVE RADS USED 14 - OTHER (EUBOW, KNEES, ETC)
02 - FRONT - MIDDLE 08 - T	THIRD - MIDDLE 13 -	PASSENGER IN UNENCLOSED CARGO / TRAILING UNIT	2 - DEPLOYED FRONT
04 - SECOND - LEFT SIDE (MOTORCYCLE PASSENGER) 10 - S 05 - SECOND - MIDDLE 11 - F	SLEEPER SECTION OF CAB (TRUCK)	RIDING ON A VEHICLE EXTERIOR (NON- NON-MOTORIST OTHER UNKNOWN	TRALING UNIT) 3 - DEPLOYED SIDE 4 - DEPLOYED BOTH FRONT/SIDE 5 - NOT:APPLICABLE 9 - DEPLOYMENT UNKNOWN
1 - NOT EJECTED 1 - NOT TRAPPED 2 - TOTALLY EJECTED 2 - EXTRACT BY	OPERATOR LICENSE CLASS CONDITION 1 - CLASS A 1 - APPARENTLY NORMAL 2 - CLASS B 2 - PHYSICAL IMPAIRMENT	5 - FALL ASLEEP, FAIN 8 - UNDER THE INFLUE	NCE OF 2 - YES - ALCOHOL SUSPECTED
4-NOT APPLICABLE 3-EXTRACTED BY NON-MECHANICAL MEANS t	3 - CLASS C 3 - EMOTIONAL (DEPRESSED, A 4 - REGULAR CLASS (OHIO IS 'D') 4 - REUNESS 5 - MG/MOPED QNLY IL TEST TYPE DRUG TEST SYATURES	7 - OTHER	4 - YES - DRUG SUSPECTED 5 - YES - ALCOHOL AND DRUG SUSPECT
ALCONOL INSTANDS ALCONOL 1 - NONE GIVEN 2 - TEST REFUSED 3 - TEST GIVEN, CONTAMINATED SAMPLEADNUSABLE 3 - URINI 4 - TEST GIVEN, RESULTS KNOWN 4 - BREA	E 1 - NONE GIVEN DD 2 - TEST REFUSED E 3 - TEST GIVEN, CONTAMINATED SAMPLE/UNUSABLI	1 - NONE 1 - NO DISTRACT 2 - BLOOD 2 - PHONE 5 3 - URINE 3 - TEXTING/EMA	ED REPORTED 6 - OTHER INSIDE THE VEHICLE 7 - EXTERNAL DISTRACTION
5. TEST GIVEN, RESULTS UNKNOWN 5. OTHE UNIT NAME: LAST, FIRST, MIDDLE		5 - OTHER 5 - OTHER ELES	COMMUNICATION DEVICE RONIC DEVICE DEVICE, RADIO, DVD AGE 0EHDER F - FEMALE
ADDRESS, CITY, STATE, ZIP	· · ·		NTACT PHONE- INCLUDE AREA CODE
	MEDICAL FACILITY INJURED TAKEN TO		
UNIT NUMBER NAME: LAST, FIRST, MIDDLE		DATE OF BIRTH	
ADDRESS, CITY, STATE, ZIP			NTACT PHONE- INCLUDE AREA CODE
ADDRESS, CITY, STATE, ZIP	MEDICAL FACILITY INURED TAKEN TO		
		HELMET	EVECTION TRAPPED PAGE 7 OF 9

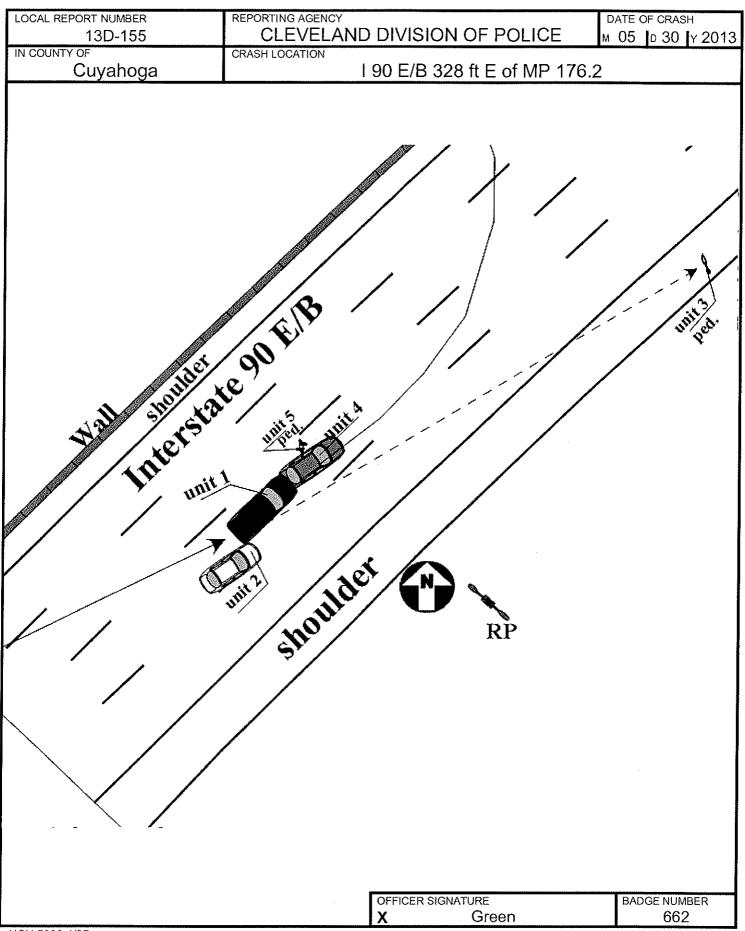
.


CCCUPANT/ WITNESS ADD	ENDUM	W.T	THUBER		
UNIT NUMBER NAME: LAST, PIRST, MIDDLE		DATE OF BIRTH		AGE	GENDER
Johnson, Thomas			CONTACT PHONE- INCLUDE	AREA CODF	M - MALE
12005 Angelius Avenue Cleveland, Ohio			21	635537	
INURGES INURED TAKEN BY EMS AGENCY MEDICAL FACILITY INURED TAKEN TO	SAFETY ECUIPMENT USE			AIR BAG USAC	E EJECTION TRAPPEO
		DATE OF BIRTH	······································	AGE	GENDER F - FEMALE M - MALE
ADDRESS, CITY, STATE, ZIP Guth, Chuck		<u> [] </u> ^	CONTACT PHONE- INCLUDE	AREA CODE	VI M-MALE
27653 Capel Road Columbia Station, Ohic	5 44028 Isafety Equipment use	DOT COMPL	1	85776	42
				AGE	GENDER P-FEMALE M-MALE
ADORESS, CITY, STATE, ZIP			CONTACT PHONE INCLUDE	WEA CODE	
8 3759 Martin Luther King Drive Cleveland, Ol INURES INURED TWENBY EMS AGENCY MEDICAL FACILITY INURED TAKEN TO	10 44108		WANT SEATING POSITION	85453	
UNIT NUMBER NAME LAST, FIRST, MIDDLE Barnes, Austin, B.		DATE OF BIRTH	1 1 1 1	AGE	GENDER F - FEMALE M - MALE
ADDRESS, CITY, STATE, ZIP			ONTACT PHONE INCLUDE /		
8 3860 Ben Hur Avenue Willoughby, Ohio 4	44094 SAFETY EQUIPMENT USED		ANT SEATINGPOSITION	NR BAG USAG	
		HELMET			
			1 1 9 9 0	^{AGE} 23	F - FEMALE
ADDRESS, CITY, STATE, ZP 4511 Granada Boulevard Warrensville Heights,	Obio 44101	0	ONTACT PHONE INCLUDE A	REACODE	
4311 Granada Boulevard Vvarrensville Heights, INURIES INURED TAKEN BY EMS AGENCY MEDICAL FACILITY INURED TAKEN TO			WT SEATING POSITION	79844 AIR BAG USAGE	
		HELMET DATE OF BIRTH		AGE	
				~~	F - FEMALE M - MALE
Z ADDRESS, CITY, STATE, ZIP			WTACT PHONE- INCLUDE AF	REA CODE	
INURIES INURED TAKEN BY EMS AGENCY MEDICAL FACILITY INURED TAKEN TO	SAFETY EQUIPMENT USED			AIR BAG USAGE	EJECTION TRAPPED
INJURIES INJURED TAKEN BY SAFETY EQUIPMENT USED 90 - UNKN		HELMET			
) RESTRAINT SYSTEM FORM RESTRAINT SYSTEM REAR	IARD FACING 1	DN-MOTORIST 9 - NONE USED 0 - HELMET USED 1 - PROTECTIVE PADS	13 - LIC	FLECTIVE CLOTHING SHTING HER
	TER SEAT		(ELBOW, KNEES, ET	c)	DEN
SEATING POSITION 11 - PASSENGER IN OTHER ENCLOSED CARGO AREA 01 - FRONT - LEFT SIDE (MOTORCYCLE DRIVER) 11 - PASSENGER IN OTHER ENCLOSED CARGO AREA 02 - FRONT - MIDDLE (NON-TRAILING UNIT SUCH AS A BUS, PICK-UP WITH CAB 03 - FRONT - RIGHT SIDE 12 - PASSENGER IN UNENCLOSED CARGO AREA 04 - SECOND - LEFT SIDE (MOTORCYCLE PASSENGER) 13 - TRAILING UNIT 05 - SECOND - MIDDLE 14 - RIDING ON A VEHICLE EXTERIOR (NON-TRAILING UNIT) 06 - SECOND - RIGHT SIDE 15 - NON-MOTORIST 07 - THIRD - LEFT SIDE (MOTORCYCLE SIDE CAR) 16 - DTHER 08 - THIRD - RIGHT SIDE 99 - UNKNOWN	AIR BAG USAGE 1 - NOT DEPLOYED 2 - DEPLOYED FRONT 3 - DEPLOYED SIDE 4 - DEPLOYED SIDE 5 - NOT APPLICABLE 9 - DEPLOYMENT UNKNO	1 - N 2 - T 3 - P NT/SIDE 4 - N	TION OTEJECTED OTALLY EJECTED ARTIMILY EJECTED OT APPLICABLE	3 EXTRACT	F BY ICAL MEANS
10 - BLEEPER SECTION OF CAB (TRUCK)		a shan a a shan a shi			PAGE Q OF Q

HSY8355 DH1P (Rev 01/12)

OHIO TRAFFIC CRASH REPORT DIAGRAM / NARRATIVE CONTINUATION


он-2 0066657__


OHIO TRAFFIC CRASH REPORT DIAGRAM / NARRATIVE CONTINUATION

006667

OHIO TRAFFIC CRASH REPORT

006667

OH-2

OHIO TRAFFIC CRASH REPORT DIAGRAM / NARRATIVE CONTINUATION

LOCAL REPORT NUMBER	REPORTING AGENCY	J	DATE OF CRASH
13D-155		AND DIVISION OF POLICE	M 05 D 30 Y 2013
IN COUNTY OF	CRASH LOCATION		
Cuyahoga	I	I 90 E/B 328 ft E of MP 176	5.2
University of the set			
		OFFICER SIGNATURE	BADGE NUMBER
HSY 7002 4/07		X Green	662

Project Safety Performance Report

General Information								
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com					
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074					
Reference Number		Date Performed	6/25/2015					
Analyst	VM	Analysis Year	2013					
Agency/Company	LJB Inc		MLK Drive - Short Term Improvements					

Summary of Anticipated Safety Performance of the Project (average crashes/year) 16.0 Existing Conditions 13.9 14.0 Predicted Average Crash 12.8 Frequency 12.0 Existing Conditions 10.0 9.0 Expected Average Crash 8.1 8.0 Frequency 6.0 5.2 Existing Conditions 3.4 Potential for Safety 4.0 2.8 2.5 Improvement 1.8 1.6 2.0 0.9 1.1 0.6 0.4 0.4 0.4 0.2 0.0 Proposed Conditions 0.0 Expected Average Crash **B** -0.2 KA С 0 Total Frequency -2.0

Project Summary Results (Without Animal Crashes)									
KA B C O Total									
N _{predicted} - Existing Conditions	0.4371	1.7888	2.4512	8.1335	12.8106				
N _{expected} - Existing Conditions	0.4274	1.5820	2.8137	9.0469	13.8700				
N _{potential for improvement} - Existing Conditions	-0.0097	-0.2068	0.3625	0.9134	1.0594				
N _{expected} - Proposed Conditions	0.1622	0.5973	1.0642	3.4253	5.2490				

Project Safety Performance Report

Economic Crash Analysis Tool	General Information								
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com						
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074						
Reference Number		Date Performed	6/25/2015						
Analyst	VM	Analysis Year	2013						
Agency/Company	LJB Inc		MLK Drive - Short Term Improvements						

	Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)								
Project Element ID Common Name Crash Severity Level KA B C O Total									
							CR382; 3.4	CR382; 3.4 E.55th/S.Marginal/Dick Goddard/I-90 EB ramp 0.4371 1.7888 2.4512 8.1335 12.8106	

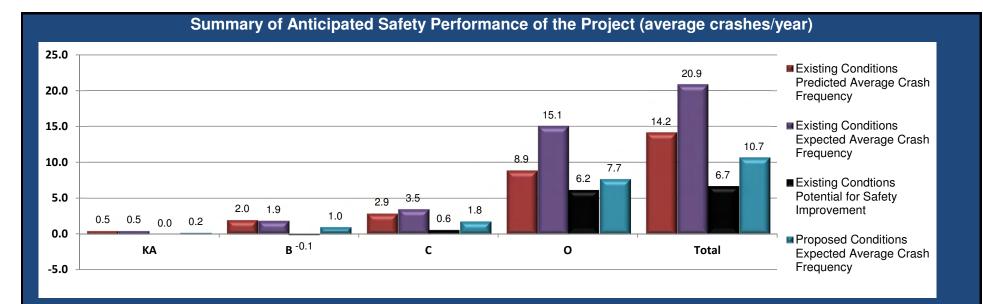
Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)									
Project Element ID Common Name Crash Severity Level									
Project Element ID	ject Element ID Common Name KA B C O To								
CR382; 3.4 E.55th/S.Marginal/Dick Goddard/I-90 EB ramp 0.4274 1.582 2.8137 9.0469 13.87									

Existing Conditions Project Element Potential for Safety Improvement Summary (Without Animal Crashes)								
Project Element ID Common Name Crash Severity Level								
Project Element ID	Common Name	KA	В	С	0	Total		
<u>CR382; 3.4</u>	CR382; 3.4 E.55th/S.Marginal/Dick Goddard/I-90 EB ramp -0.0097 -0.2068 0.3625 0.9134 1.0594							

Proposed Conditions Project Element Expected Crash Summary (Without Animal Crashes)									
Project Element ID	Project Element ID Common Name Crash Severity Level								
Project Element ID	Common Name	KA B C O Tota							
CR382; 3.4	R382; 3.4 E.55th/S.Marginal/Dick Goddard/I-90 EB ramp 0.1622 0.5973 1.0642 3.4253 5.249								

Project Safety Performance R

	General Information		
Project Name	CUY-90 Safety Study	Contact Email	
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	
Reference Number		Date Performed	
Analyst	VM	Analysis Year	
Agency/Company	LJB Inc		


Summary by Crash Type					
Crash Type	Existing			Proposed	
	Predicted Crash Frequency	Expected Crash Frequency	PSI	Expected Crash Frequency	
Unknown	0.0071	0.0071	0.0000	0.0034	
Head On	0.0827	0.0819	-0.0008	0.0393	
Rear End	5.8618	7.8887	2.0269	3.7861	
Backing	0.2772	0.2502	-0.0270	0.1201	
Sideswipe - Meeting	0.1710	0.1687	-0.0023	0.0810	
Sideswipe - Passing	1.3537	1.2020	-0.1517	0.5769	
Angle	2.2058	1.6654	-0.5404	0.7993	
Parked Vehicle	0.2498	0.2325	-0.0173	0.1116	
Pedestrian	0.4294	0.3725	-0.0569	0.1902	
Animal	0.0000	0.0000	0.0000	0.0000	
Train	0.0004	0.0004	0.0000	0.0002	
Pedalcycles	0.3396	0.2992	-0.0404	0.1292	
Other Non-Vehicle	0.0000	0.0000	0.0000	0.0000	
Fixed Object	0.4026	0.4079	0.0053	0.1958	
Other Object	0.0143	0.0142	-0.0001	0.0068	
Overturning	0.0225	0.0223	-0.0002	0.0107	
Other Non-Collision	0.0536	0.0528	-0.0008	0.0253	
Left Turn	1.3390	1.2042	-0.1348	0.5779	
Right Turn	0.0000	0.0000	0.0000	0.0000	

Project Safety Performance Report

General Information				
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com	
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074	
Reference Number		Date Performed	6/25/2015	
Analyst	VM	Analysis Year	2013	
Agency/Company	LJB Inc		Short Term Improvements	

Project Summary Results (Without Animal Crashes)					
	KA	В	C	0	Total
N _{predicted} - Existing Conditions	0.4610	1.9869	2.8754	8.9188	14.2421
N _{expected} - Existing Conditions	0.4500	1.9173	3.4555	15.0699	20.8927
N _{potential for improvement} - Existing Conditions	-0.0110	-0.0696	0.5801	6.1511	6.6506
N _{expected} - Proposed Conditions	0.2301	0.9784	1.7620	7.7439	10.7144

Project Safety Performance Report

General Information					
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com		
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074		
Reference Number		Date Performed	6/25/2015		
Analyst	VM	Analysis Year	2013		
Agency/Company	LJB Inc		Short Term Improvements		

Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
Project Element ID	Common Name	KA	В	С	0	Total
MR12252; 2.65-2.84	MLK-E.88th to EB ramps	0.0132	0.0457	0.0758	0.3156	0.4503
MR12252; 2.88	MLK @ I-90 EB ramps intersection	0.1574	0.6831	0.9783	4.035	5.8538
MR12252; 3.02	MLK @ WB ramps/N.Marginal	0.2904	1.2581	1.8213	4.5682	7.938

Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Draiget Floment ID	Common Nomo	Common Name Crash Severity Level				
Project Element ID	Common Name	KA	В	С	0	Total
MR12252; 2.65-2.84	MLK-E.88th to EB ramps	0.013	0.045	0.0736	0.6756	0.8072
MR12252; 2.88	MLK @ I-90 EB ramps intersection	0.1545	0.7565	1.5884	10.1692	12.6686
MR12252; 3.02	MLK @ WB ramps/N.Marginal	0.2825	1.1158	1.7935	4.2251	7.4169

Existing Conditions Project Element Potential for Safety Improvement Summary (Without Animal Crashes)						
Draiget Floment ID	Common Name	Crash Severity Level				
Project Element ID	Common Name	KA	В	С	0	Total
MR12252; 2.65-2.84	MLK-E.88th to EB ramps	-0.0002	-0.0007	-0.0022	0.36	0.3569
MR12252; 2.88	MLK @ I-90 EB ramps intersection	-0.0029	0.0734	0.6101	6.1342	6.8148
MR12252; 3.02	MLK @ WB ramps/N.Marginal	-0.0079	-0.1423	-0.0278	-0.3431	-0.5211

Proposed Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Project Element ID	Project Element ID Common Name Crash Severity Level					
Project Element ID	Common Name	KA	В	С	0	Total
MR12252; 2.65-2.84	MLK-E.88th to EB ramps	0.0089	0.0304	0.0498	0.456	0.5451
MR12252; 2.88	MLK @ I-90 EB ramps intersection	0.0782	0.3831	0.8042	5.1487	6.4142
MR12252; 3.02	MLK @ WB ramps/N.Marginal	0.143	0.5649	0.908	2.1392	3.7551

Project Safety Performance R

	General I	nformation
Project Name	CUY-90 Safety Study	Contact Email
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone
Reference Number		Date Performed
Analyst	VM	Analysis Year
Agency/Company	LJB Inc	

Summary by Crash Type					
		Existing		Proposed	
Crash Type	Predicted Crash Frequency	Expected Crash Frequency	PSI	Expected Crash Frequency	
Unknown	0.0125	0.0124	-0.0001	0.0064	
Head On	0.0970	0.0963	-0.0007	0.0495	
Rear End	6.4941	13.1865	6.6924	6.7735	
Backing	0.2983	0.2977	-0.0006	0.1530	
Sideswipe - Meeting	0.1994	0.2029	0.0035	0.1051	
Sideswipe - Passing	1.5035	1.8972	0.3937	0.9745	
Angle	2.4412	2.0674	-0.3738	1.0541	
Parked Vehicle	0.4303	0.3856	-0.0447	0.1992	
Pedestrian	0.2935	0.2762	-0.0173	0.1402	
Animal	0.0168	0.0166	-0.0002	0.0112	
Train	0.0008	0.0009	0.0001	0.0005	
Pedalcycles	0.1384	0.1343	-0.0041	0.0681	
Other Non-Vehicle	0.0000	0.0000	0.0000	0.0000	
Fixed Object	0.6940	0.8768	0.1828	0.4493	
Other Object	0.0252	0.0249	-0.0003	0.0129	
Overturning	0.0389	0.0388	-0.0001	0.0198	
Other Non-Collision	0.0903	0.0885	-0.0018	0.0452	
Left Turn	1.4848	1.3063	-0.1785	0.6631	
Right Turn	0.0000	0.0000	0.0000	0.0000	

CUY-90-19.50/21.30 - SAFETY STUDY ODOT DISTRICT 12 **PRELIMINARY CONSTRUCTION ESTIMATE - AUGUST 2015**

<u>__</u> mill 9 ovorlav r Eth Street I

-

ITEM	E. 55th Street Improvements: New signal, mill & overlay DESCRIPTION	QUANTITY	UNIT COST	TOTAL COST
	EARING AND GRUBBING	1 LS	\$5,000	\$5,00
	VEMENT REMOVED	4000 SY	\$8	\$32,00
	REMOVED	1200 LF	\$3	\$3,60
	ALK REMOVED	500 SF	\$3	
	EDIAN REMOVED	150 SY	\$5	\$75 \$75
			\$3	پر چ رج \$5,40
	TCH BASIN OR INLET REMOVED	1800 LF 4 EA	\$350	\$5,40 \$1,40
	CAVATION	500 CY	\$350	
	IBANKMENT	100 CY		\$7,50 \$1.20
	IBANNIVIENT		\$12	¥) -
		3500 SY 3000 SY	\$2 \$6	\$7,00
	MENT STABILIZED SUBGRADE, 16" DEEP	200 ST		\$16,50
-			\$2	\$40
-	VEMENT PLANING, ASPHALT CONCRETE	6500 SY	\$3	\$16,25
	PHALT CONCRETE BASE, PG64-22	100 CY	\$125	\$12,50
	GREGATE BASE, 6"	630 CY	\$40	\$25,20
	CK COAT	1000 GAL	\$3	\$3,00
448 PG	PHALT CONCRETE INTERMEDIATE COURSE, TYPE 2, 364-22	25 CY	\$175	\$4,37
448 AS 22	PHALT CONCRETE SURFACE COURSE, TYPE 1, PG64-	250 CY	\$225	\$56,25
451 CC	DNCRETE PAVEMENT	3000 SY	\$75	\$225,00
603 15'	" CONDUIT, TYPE B	500 LF	\$50	\$25,00
604 CA	TCH BASIN, NO. 3	4 EA	\$2,500	\$10,00
	ANHOLE, NO. 3	2 EA	\$3,000	\$6,00
	BASE PIPE UNDERDRAIN	1200 LF	\$8	\$9.60
	CONCRETE WALK	1000 SF	\$5	\$5,00
	JRB RAMPS	2 EA	\$450	\$90
	JRB. TYPE 6	2000 LF	\$15	\$30,00
	CONCRETE TRAFFIC ISLAND	50 SY	\$50	\$2,50
	GNAGE	1 LS	\$15,000	\$15,00
	I SIGN	2 LS	\$20,000	\$40,00
	AFFIC SIGNAL REMOVED	2 LS	\$25,000	\$50,0
	AFFIC SIGNAL INSTALLATION	2 EA	\$150,000	\$300,0
	VEMENT MARKINGS	1 LS	\$25,000	\$25,00
	PSOIL	25 CY	\$25	\$6
	EDING AND MULCHING	500 SY	\$2	\$1,0
	VPPP	1 LS	\$3,000	\$3,00
	ROSION CONTROL	2500 EA	\$3,000	\$2,5
			Subtotal	\$ 951,000.0
614 MA	AINTAINING TRAFFIC	1 LS	\$25,000	\$25,0
	ELD OFFICE, TYPE B	6 MN	\$1,600	<u>φ23,00</u> \$9,60
	DNSTRUCTION LAYOUT STAKES	1 LS	\$10,000	\$9,00 \$10,00
	DBILIZATION	1 LS	\$40,000	\$40,00
•		•	Subtotal	\$1,036,0
		Dee		
		Des	sign Risk (35%) Subtotal	\$363,00 \$1,399,00
		Inflat	ion Cost (15%)	\$210,0
			Total	\$1,609,0

Notes:

R/W not anticipated
 New pavement is assumed to be concrete on ramp and asphalt on side road.
 Utility relocation not included

Project Cost Estimate				
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com	
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074	
Reference Number		Date Performed	6/25/2015	
Analyst	VM	Analysis Year	2013	
Agency/Company	LJB Inc		MLK Drive - Short Term Improvements	

Engineering Design %	10%
Contingency %	35%

Countermeasures	Construction Costs	Right of Way Costs	Engineering Design Costs	Contingency Amount	Total Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value
Site Characteristic Improvements (i.e. Lane widening)			\$0.00	\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Lighting)			\$0.00	\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Signal Phasing)			\$0.00	\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Added Right Turn Lane)			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
CMF 2 - Road Diet (Convert 4-lane undivided to 2-lane plus turn lanes-ID:199)	\$550,000.00		\$55,000.00	\$192,500.00	\$797,500.00		
CMF 3 - Provide a left turn lane on one major road approach	\$136,000.00		\$13,600.00	\$47,600.00	\$197,200.00		
			\$0.00	\$0.00	\$0.00		
CMF 5 - Improve signal visibility	\$350,000.00		\$35,000.00	\$122,500.00	\$507,500.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
Totals	\$1,036,000.00	\$0.00	\$103,600.00	\$362,600.00	\$1,502,200.00	\$0.00	\$0.00

Inflation % 15%

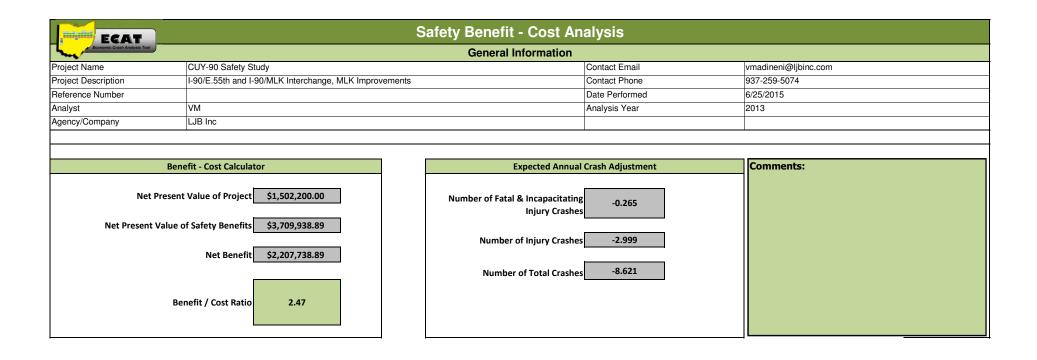
\$1,727,530.00

Final Costruction Cost:

*Final construction cost should match the Project Cost Estimate

Safety Benefit - Cost Analysis

ECAT	Salely Delle	and - Cost Analysis		
Economic Crash Analysis Tool	Gener			
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com	
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074	
Reference Number		Date Performed	6/25/2015	
Analyst	VM	Analysis Year	2013	
Agency/Company	LJB Inc			


Select Site Types to be used in Benefit-Cost Analysis:

Comments: Improvements on E.55th - Improve I-90 EB ramps/Dick Goddard Rd alignment and upgrade signal system, SB defacto left turn lane.

All Sites

Countermeasure Service Lives, Costs, and Safety Benefits										
Countermeasures	Service Life (Years)	Initial Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value	Net Present Cost of Countermeasure	Total Cost of Countermeasures	Summary of Annual Crash Modifications	Net Present Value of Safety Benefits		
Site Characteristic Improvements (i.e. Lane widening)		\$0.00			\$0.00	\$0.00				
Site Characteristic Improvements (i.e. Lighting)		\$0.00			\$0.00	\$0.00		\$358,580		
Site Characteristic Improvements (i.e. Signal Phasing)		\$0.00			\$0.00	\$0.00	-0.838			
Site Characteristic Improvements (i.e. Added Right Turn Lane)		\$0.00			\$0.00	\$0.00				
		\$0.00			\$0.00	\$0.00	0.000	\$0		
CMF 2 - Road Diet (Convert 4-lane undivided to 2-lane plus turn lanes-ID:199)	20	\$797,500.00			\$797,500.00	\$797,500.00	-3.779	\$1,627,421		
CMF 3 - Provide a left turn lane on one major road approach	20	\$197,200.00			\$197,200.00	\$197,200.00	-3.609	\$1,553,823		
	20	\$0.00			\$0.00	\$0.00	0.000	\$0		
CMF 5 - Improve signal visibility	20	\$507,500.00			\$507,500.00	\$507,500.00	-0.395	\$170,114		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
Totals		\$1,502,200.00	\$0.00	\$0.00	\$1,502,200.00	\$1,502,200.00	-8.621	\$3,709,939		

CUY-90-19.50/21.30 SAFETY STUDY ODOT DISTRICT 12 PRELIMINARY CONSTRUCTION ESTIMATE - AUGUST 2015 MI K Drive Short Term: BESUBEACE AND STRIPE BETWEEN WE EXIT BAMP AND 88TH ST. 2 NEW SIGNALS

	MLK Drive Short Term: RESURFACE AND STRIPE BETWEEN WB EX		H ST, 2 NEW SIGN	ALS
ITEM		JANTITY	UNIT COST	TOTAL COST
201	CLEARING AND GRUBBING	1 LS	\$5,000	\$5,000
202	REMOVE CONCRETE ISLANDS	1540 SY	\$25	\$38,500
202	PAVEMENT REMOVED	260 SY	\$15	\$3,900
202	SIDEWALK REMOVED	2500 SF	\$2	\$5,000
202	CURB REMOVED	280 SF	\$4	\$1,120
254	PAVEMENT PLANING, ASPHALT CONCRETE	6500 SY	\$5	\$32,500
301	ASPHALT CONCRETE BASE, 6"	200 CY	\$200	\$40,000
304	AGGREGATE BASE, 10"	300 CY	\$50	\$15,000
407	TACK COAT	1000 GAL	\$5	\$5,000
448	ASPHALT CONCRETE SURFACE COURSE, TYPE 1, PG64- 22, 1.25"	325 CY	\$275	\$89,375
448	ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 1, PG64-22, 1.75"	75 CY	\$250	\$18,750
608	CONCRETE WALK	2500 SF	\$4	\$10,000
609	CURB	280 FT	\$20	\$5,600
630	SIGNAGE	1 LS	\$5,000	\$5,000
632	TRAFFIC SIGNAL INSTALLATION	2 EA	\$150,000	\$300,000
632	TRAFFIC SIGNAL ADJUSTMENTS	1 EA	\$25,000	\$25,000
644	PAVEMENT MARKINGS REMOVAL AND REPLACEMENT	1 LS	\$20,000	\$20,000
644	PAVEMENT MARKINGS	1 LS	\$25,000	\$25,000
832	SWPPP	1 LS	\$2,500	\$2,500
832	EROSION CONTROL	2500 EA	\$1	\$2,500
			Subtotal	\$ 650,000.00
614	MAINTAINING TRAFFIC	1 LS	\$25,000	\$25,000
619	FIELD OFFICE, TYPE B	3 MN	\$1,600	\$4,800
623	CONSTRUCTION LAYOUT STAKES	1 LS	\$2,500	\$2,500
624	MOBILIZATION	1 LS	\$10,000	\$10,000
			Subtotal	\$693,000
		De	sign Risk (35%)	\$243,000
			Subtotal	\$936,000
L				A
		Inflat	tion Cost (8.6%)	\$81,000
			Total	\$1,017,000

Notes:

1 Construction estimated in 2017

2 Utility relocation not included

CUY-90-19.50/21.30 SAFETY STUDY ODOT DISTRICT 12 PRELIMINARY CONSTRUCTION ESTIMATE - AUGUST 2015

	I-90 Ramp Improvements: REMOVE 2 RAMPS	· · · · ·	,	
ITEM	DESCRIPTION	QUANTITY	UNIT COST	TOTAL COST
201	CLEARING AND GRUBBING	1 LS	\$5,000	\$5,000
202	PAVEMENT REMOVED	10000 SY	\$8	\$80,000
202	CURB REMOVED	3800 LF	\$5	\$19,000
202	CATCH BASIN OR INLET REMOVED	5 EA	\$500	\$2,500
202	GUARD RAIL REMOVED	300 LF	\$8	\$2,400
203	EXCAVATION	8000 CY	\$8	\$64,000
203	EMBANKMENT	500 CY	\$12	\$6,000
252	PAVEMENT SAWING	1200 LF	\$2	\$2,400
304	AGGREGATE BASE	100 CY	\$60	\$6,000
452	CONCRETE PAVEMENT	500 SY	\$100	\$50,000
605	6" BASE PIPE UNDERDRAIN	1200 LF	\$8	\$9,600
609	CURB, TYPE 6	500 LF	\$18	\$9,000
630	SIGNAGE	1 LS	\$30,000	\$30,000
644	PAVEMENT MARKINGS	1 LS	\$50,000	\$50,000
659	SEEDING AND MULCHING	15000 SY	\$2	\$30,000
832	SWPPP	1 LS	\$10,000	\$10,000
832	EROSION CONTROL	5000 EA	\$1	\$5,000
			Cubtotal	\$ 381,000.00
			Subtotal	\$ 361,000.00
614	MAINTAINING TRAFFIC	1 LS	\$50,000	\$50,000
619	FIELD OFFICE, TYPE B	6 MN	\$1,600	\$9,600
623	CONSTRUCTION LAYOUT STAKES	1 LS	\$10,000	\$10,000
624	MOBILIZATION	1 LS	\$10,000	\$10,000
			0.1.1.1	<u> </u>
			Subtotal	\$461,000

Design Risk (35%)	\$162,000
Subtotal	\$623,000
Inflation Cost (8.6%)	\$54,000
Total	\$677,000
Notes	

Notes:

1 Construction estimated in]2017

2 Utility relocation not included

Project Cost Estimate							
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com				
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074				
Reference Number		Date Performed	6/25/2015				
Analyst	VM	Analysis Year	2013				
Agency/Company	LJB Inc						

Engineering Design %	10%
Contingency %	35%

Countermeasures	Construction Costs	Right of Way Costs	Engineering Design Costs	Contingency Amount	Total Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value
Site Characteristic Improvements (i.e. Lane widening)			\$0.00	\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Lighting)			\$0.00	\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Signal Phasing)			\$0.00	\$0.00	\$0.00		
Remove I-90 ramps at 72nd St(EB entrance & WB exit)	\$461,000.00		\$46,100.00	\$161,350.00	\$668,450.00		
			\$0.00	\$0.00	\$0.00		
CMF 2 - Add a through lane (SB direction)	\$193,000.00		\$19,300.00	\$67,550.00	\$279,850.00		
CMF 3 - Provide a left turn lane on one major road approach	\$100,000.00		\$10,000.00	\$35,000.00	\$145,000.00		
CMF 4 - Install Traffic Signal (CMF ID:1459), AADT upto 125,500	\$400,000.00		\$40,000.00	\$140,000.00	\$580,000.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
Totals	\$1,154,000.00	\$0.00	\$115,400.00	\$403,900.00	\$1,673,300.00	\$0.00	\$0.00

Inflation % 9%

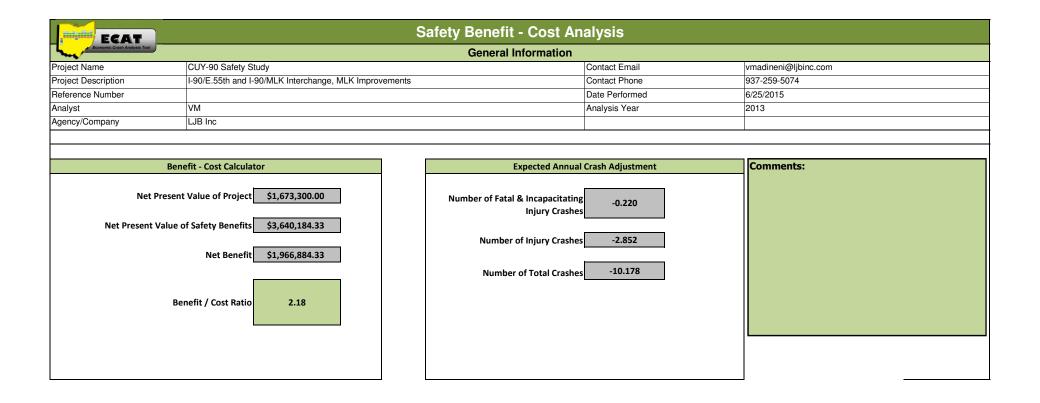
Final Costruction Cost:

\$1,817,203.80

*Final construction cost should match the Project Cost Estimate

Safety Benefit - Cost Analysis

Economic Crash Analysis Tool	General Information		
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074
Reference Number		Date Performed	6/25/2015
Analyst	VM	Analysis Year	2013
Agency/Company	LJB Inc		


Select Site Types to be used in Benefit-Cost Analysis:

All Sites

Comments: Install traffic signal at EB ramps intersection, Add a LT lane at the WB exit ramp approach and on MLK to EB entrance ramp, remove median and add a SB through lane on MLK from WB ramps to south of E.88th st.

Countermeasure Service Lives, Costs, and Safety Benefits										
Countermeasures	Service Life (Years)	Initial Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value	Net Present Cost of Countermeasure	Total Cost of Countermeasures	Summary of Annual Crash Modifications	Net Present Value of Safety Benefits		
Site Characteristic Improvements (i.e. Lane widening)		\$0.00			\$0.00	\$0.00				
Site Characteristic Improvements (i.e. Lighting)		\$0.00			\$0.00	\$0.00		(\$607)		
Site Characteristic Improvements (i.e. Signal Phasing)		\$0.00			\$0.00	\$0.00	0.000			
Remove I-90 ramps at 72nd St(EB entrance & WB exit)	20	\$668,450.00			\$668,450.00	\$668,450.00				
CMF 1 - Conversion of stop-controlled intersection into multi-lane roundabout	20	\$0.00			\$0.00	\$0.00	0.000	\$0		
CMF 2 - Add a through lane (SB direction)	20	\$279,850.00			\$279,850.00	\$279,850.00	-0.262	\$72,137		
CMF 3 - Provide a left turn lane on one major road approach	20	\$145,000.00			\$145,000.00	\$145,000.00	-7.834	\$2,819,257		
CMF 4 - Install Traffic Signal (CMF ID:1459), AADT upto 125,500	20	\$580,000.00			\$580,000.00	\$580,000.00	-2.083	\$749,397		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
		\$0.00			\$0.00	\$0.00	0.000	\$0		
Totals		\$1,673,300.00	\$0.00	\$0.00	\$1,673,300.00	\$1,673,300.00	-10.178	\$3,640,184		

CUY-90-19.50/21.30 SAFETY STUDY - MLK ODOT DISTRICT 12 PRELIMINARY CONSTRUCTION ESTIMATE - AUGUST 2015 MLK MEDIUM TERM

	MLK MEDIUM TERM			
ITEM	DESCRIPTION	QUANTITY	UNIT COST	TOTAL COST
201	CLEARING AND GRUBBING	1 LS	\$15,000	\$15,000
202	PAVEMENT REMOVED	9000 SY	\$8	\$72,000
202	CURB REMOVED	4500 LF	\$5	\$22,500
202	CATCH BASIN OR INLET REMOVED	10 EA	\$500	\$5,000
203	EXCAVATION	8000 CY	\$25	\$200,000
203	EMBANKMENT	10000 CY	\$25	\$250,000
204	SUBGRADE COMPACTION	10000 SY	\$3	\$30,000
252	PAVEMENT SAWING	500 LF	\$2	\$1,000
254	PAVEMENT PLANING, ASPHALT CONCRETE	10500 SY	\$4	\$42,000
304	AGGREGATE BASE, 6"	1700 CY	\$40	\$68,000
407	TACK COAT	1500 GAL	\$5	\$7,500
448	ASPHALT CONCRETE SURFACE COURSE, TYPE 1, PG64- 22, 1.5"	450 CY	\$175	\$78,750
451	CONCRETE PAVEMENT	10000 SY	\$75	\$750,000
501	STRUCTURES	2 LS	\$500,000	\$1,000,000
603	15" CONDUIT, TYPE B	2500 LF	\$40	\$100,000
604	CATCH BASIN	10 EA	\$2,500	\$25,000
604	MANHOLE, NO. 3	5 EA	\$3,000	\$15,000
605	6" BASE PIPE UNDERDRAIN	2500 LF	\$8	\$20,000
608	4" CONCRETE WALK, 5' wide	5500 SF	\$5	\$27,500
608	CURB RAMPS	4 EA	\$450	\$1,800
609	CURB, TYPE 6	2800 LF	\$18	\$50,400
609	6" CONCRETE TRAFFIC ISLAND	500 SY	\$50	\$25,000
610	RETAINING WALLS	500 SF	\$50	\$25,000
630	SIGNAGE	1 LS	\$50,000	\$50,000
644	PAVEMENT MARKINGS	1 LS	\$75,000	\$75,000
659	SEEDING AND MULCHING	8000 SY	\$2	\$16,000
832	SWPPP	1 LS	\$10,000	\$10,000
832	EROSION CONTROL	5000 EA	\$1	\$5,000
			Subtotal	\$ 2,988,000.00
614	MAINTAINING TRAFFIC	1 LS	\$250,000	\$250,000
619	FIELD OFFICE, TYPE B	18 MN	\$1,600	\$28,800
623	CONSTRUCTION LAYOUT STAKES	1 LS	\$25,000	\$25,000
624	MOBILIZATION	1 LS	\$100,000	\$100,000
	Subtotal			\$3,392,00
	Design Risk (35%)			\$1,188,00
	Subtotal			\$4,580,00
	Inflation Cost (8.6%)			
		Inflati	on Cost (8.6%)	\$394,000 \$4,974,000

Notes:

I

- 1 Construction estimated in 2017
- 2 Utility relocation not included
- 3 Roundabout and 2 ramp culverts